diff options
Diffstat (limited to '')
-rw-r--r-- | include/2geom/orphan-code/sbasis-of.h | 638 |
1 files changed, 638 insertions, 0 deletions
diff --git a/include/2geom/orphan-code/sbasis-of.h b/include/2geom/orphan-code/sbasis-of.h new file mode 100644 index 0000000..e5b76d6 --- /dev/null +++ b/include/2geom/orphan-code/sbasis-of.h @@ -0,0 +1,638 @@ +/**
+ * \file
+ * \brief Defines S-power basis function class
+ * with coefficient in arbitrary ring
+ *
+ * Authors:
+ * Nathan Hurst <njh@mail.csse.monash.edu.au>
+ * Michael Sloan <mgsloan@gmail.com>
+ *
+ * Copyright (C) 2006-2007 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#ifndef SEEN_SBASIS_OF_H
+#define SEEN_SBASIS_OF_H
+#include <vector>
+#include <cassert>
+#include <iostream>
+
+#include <2geom/interval.h>
+#include <2geom/utils.h>
+#include <2geom/exception.h>
+
+#include <2geom/orphan-code/linear-of.h>
+
+namespace Geom {
+
+template<typename T>
+class SBasisOf;
+
+#ifdef USE_SBASIS_OF
+typedef Geom::SBasisOf<double> SBasis;
+#endif
+
+/*** An empty SBasisOf<T> is identically 0. */
+template<typename T>
+class SBasisOf : public std::vector<LinearOf<T> >{
+public:
+ SBasisOf() {}
+ explicit SBasisOf(T a) {
+ this->push_back(LinearOf<T>(a,a));
+ }
+ SBasisOf(SBasisOf<T> const & a) :
+ std::vector<LinearOf<T> >(a)
+ {}
+ SBasisOf(LinearOf<T> const & bo) {
+ this->push_back(bo);
+ }
+ SBasisOf(LinearOf<T>* bo) {
+ this->push_back(*bo);
+ }
+ //static unsigned input_dim(){return T::input_dim()+1;}
+
+ //IMPL: FragmentConcept
+ typedef T output_type;
+ inline bool isZero() const {
+ if(this->empty()) return true;
+ for(unsigned i = 0; i < this->size(); i++) {
+ if(!(*this)[i].isZero()) return false;
+ }
+ return true;
+ }
+ inline bool isConstant() const {
+ if (this->empty()) return true;
+ for (unsigned i = 0; i < this->size(); i++) {
+ if(!(*this)[i].isConstant()) return false;
+ }
+ return true;
+ }
+
+ //TODO: code this...
+ bool isFinite() const;
+
+ inline T at0() const {
+ if(this->empty()) return T(0); else return (*this)[0][0];
+ }
+ inline T at1() const{
+ if(this->empty()) return T(0); else return (*this)[0][1];
+ }
+
+ T valueAt(double t) const {
+ double s = t*(1-t);
+ T p0 = T(0.), p1 = T(0.);
+ for(unsigned k = this->size(); k > 0; k--) {
+ const LinearOf<T> &lin = (*this)[k-1];
+ p0 = p0*s + lin[0];
+ p1 = p1*s + lin[1];
+ }
+ return p0*(1-t) + p1*t;
+ }
+
+ T operator()(double t) const {
+ return valueAt(t);
+ }
+
+ /**
+ * The size of the returned vector equals n+1.
+ */
+ std::vector<T> valueAndDerivatives(double t, unsigned n) const{
+ std::vector<T> ret(n+1);
+ ret[0] = valueAt(t);
+ SBasisOf<T> tmp = *this;
+ for(unsigned i = 0; i < n; i++) {
+ tmp.derive();
+ ret[i+1] = tmp.valueAt(t);
+ }
+ return ret;
+ }
+
+ //The following lines only makes sens if T=double!
+ SBasisOf<T> toSBasis() const { return SBasisOf<T>(*this); }
+ double tailError(unsigned tail) const{
+ Interval bs = *bounds_fast(*this, tail);
+ return std::max(fabs(bs.min()),fabs(bs.max()));
+ }
+
+// compute f(g)
+ SBasisOf<T> operator()(SBasisOf<T> const & g) const;
+
+ LinearOf<T> operator[](unsigned i) const {
+ assert(i < this->size());
+ return std::vector<LinearOf<T> >::operator[](i);
+ }
+
+//MUTATOR PRISON
+ LinearOf<T>& operator[](unsigned i) { return this->at(i); }
+
+ //remove extra zeros
+ void normalize() {
+ while(!this->empty() && this->back().isZero())
+ this->pop_back();
+ }
+
+ void truncate(unsigned k) { if(k < this->size()) this->resize(k); }
+private:
+ void derive(); // in place version
+ unsigned dim;
+};
+
+//template<>
+//inline unsigned SBasisOf<double>::input_dim() { return 1; }
+
+//--------------------------------------------------------------------------
+#ifdef USE_SBASIS_OF
+
+//implemented in sbasis-roots.cpp
+OptInterval bounds_exact(SBasis const &a);
+OptInterval bounds_fast(SBasis const &a, int order = 0);
+OptInterval bounds_local(SBasis const &a, const OptInterval &t, int order = 0);
+
+std::vector<double> roots(SBasis const & s);
+std::vector<std::vector<double> > multi_roots(SBasis const &f,
+ std::vector<double> const &levels,
+ double htol=1e-7,
+ double vtol=1e-7,
+ double a=0,
+ double b=1);
+#endif
+//--------------------------------------------------------------------------
+
+
+//TODO: figure out how to stick this in linear, while not adding an sbasis dep
+template<typename T>
+inline SBasisOf<T> LinearOf<T>::toSBasis() const { return SBasisOf<T>(*this); }
+
+template<typename T>
+inline SBasisOf<T> reverse(SBasisOf<T> const &a) {
+ SBasisOf<T> result;
+ result.reserve(a.size());
+ for(unsigned k = 0; k < a.size(); k++)
+ result.push_back(reverse(a[k]));
+ return result;
+}
+
+//IMPL: ScalableConcept
+template<typename T>
+inline SBasisOf<T> operator-(const SBasisOf<T>& p) {
+ if(p.isZero()) return SBasisOf<T>();
+ SBasisOf<T> result;
+ result.reserve(p.size());
+
+ for(unsigned i = 0; i < p.size(); i++) {
+ result.push_back(-p[i]);
+ }
+ return result;
+}
+
+template<typename T>
+SBasisOf<T> operator*(SBasisOf<T> const &a, double k){
+ SBasisOf<T> c;
+ //TODO: what does this mean for vectors of vectors??
+ //c.reserve(a.size());
+ for(unsigned i = 0; i < a.size(); i++)
+ c.push_back(a[i] * k);
+ return c;
+}
+
+template<typename T>
+inline SBasisOf<T> operator*(double k, SBasisOf<T> const &a) { return a*k; }
+template<typename T>
+inline SBasisOf<T> operator/(SBasisOf<T> const &a, double k) { return a*(1./k); }
+template<typename T>
+SBasisOf<T>& operator*=(SBasisOf<T>& a, double b){
+ if (a.isZero()) return a;
+ if (b == 0)
+ a.clear();
+ else
+ for(unsigned i = 0; i < a.size(); i++)
+ a[i] *= b;
+ return a;
+}
+
+template<typename T>
+inline SBasisOf<T>& operator/=(SBasisOf<T>& a, double b) { return (a*=(1./b)); }
+
+/*
+//We can also multiply by element of ring coeff T:
+template<typename T>
+SBasisOf<T> operator*(SBasisOf<T> const &a, T k){
+ SBasisOf<T> c;
+ //TODO: what does this mean for vectors of vectors??
+ //c.reserve(a.size());
+ for(unsigned i = 0; i < a.size(); i++)
+ c.push_back(a[i] * k);
+ return c;
+}
+
+template<typename T>
+inline SBasisOf<T> operator*(T k, SBasisOf<T> const &a) { return a*k; }
+template<typename T>
+SBasisOf<T>& operator*=(SBasisOf<T>& a, T b){
+ if (a.isZero()) return a;
+ if (b == 0)
+ a.clear();
+ else
+ for(unsigned i = 0; i < a.size(); i++)
+ a[i] *= b;
+ return a;
+}
+*/
+
+//IMPL: AddableConcept
+template<typename T>
+inline SBasisOf<T> operator+(const SBasisOf<T>& a, const SBasisOf<T>& b){
+ SBasisOf<T> result;
+ const unsigned out_size = std::max(a.size(), b.size());
+ const unsigned min_size = std::min(a.size(), b.size());
+ //TODO: what does this mean for vector<vector>;
+ //result.reserve(out_size);
+
+ for(unsigned i = 0; i < min_size; i++) {
+ result.push_back(a[i] + b[i]);
+ }
+ for(unsigned i = min_size; i < a.size(); i++)
+ result.push_back(a[i]);
+ for(unsigned i = min_size; i < b.size(); i++)
+ result.push_back(b[i]);
+
+ assert(result.size() == out_size);
+ return result;
+}
+
+template<typename T>
+SBasisOf<T> operator-(const SBasisOf<T>& a, const SBasisOf<T>& b){
+ SBasisOf<T> result;
+ const unsigned out_size = std::max(a.size(), b.size());
+ const unsigned min_size = std::min(a.size(), b.size());
+ //TODO: what does this mean for vector<vector>;
+ //result.reserve(out_size);
+
+ for(unsigned i = 0; i < min_size; i++) {
+ result.push_back(a[i] - b[i]);
+ }
+ for(unsigned i = min_size; i < a.size(); i++)
+ result.push_back(a[i]);
+ for(unsigned i = min_size; i < b.size(); i++)
+ result.push_back(-b[i]);
+
+ assert(result.size() == out_size);
+ return result;
+}
+
+template<typename T>
+SBasisOf<T>& operator+=(SBasisOf<T>& a, const SBasisOf<T>& b){
+ const unsigned out_size = std::max(a.size(), b.size());
+ const unsigned min_size = std::min(a.size(), b.size());
+ //TODO: what does this mean for vectors of vectors
+ //a.reserve(out_size);
+ for(unsigned i = 0; i < min_size; i++)
+ a[i] += b[i];
+ for(unsigned i = min_size; i < b.size(); i++)
+ a.push_back(b[i]);
+
+ assert(a.size() == out_size);
+ return a;
+}
+
+template<typename T>
+SBasisOf<T>& operator-=(SBasisOf<T>& a, const SBasisOf<T>& b){
+ const unsigned out_size = std::max(a.size(), b.size());
+ const unsigned min_size = std::min(a.size(), b.size());
+ //TODO: what does this mean for vectors of vectors
+ //a.reserve(out_size);
+ for(unsigned i = 0; i < min_size; i++)
+ a[i] -= b[i];
+ for(unsigned i = min_size; i < b.size(); i++)
+ a.push_back(-b[i]);
+
+ assert(a.size() == out_size);
+ return a;
+}
+
+//TODO: remove?
+template<typename T>
+inline SBasisOf<T> operator+(const SBasisOf<T> & a, LinearOf<T> const & b) {
+ if(b.isZero()) return a;
+ if(a.isZero()) return b;
+ SBasisOf<T> result(a);
+ result[0] += b;
+ return result;
+}
+template<typename T>
+inline SBasisOf<T> operator-(const SBasisOf<T> & a, LinearOf<T> const & b) {
+ if(b.isZero()) return a;
+ SBasisOf<T> result(a);
+ result[0] -= b;
+ return result;
+}
+template<typename T>
+inline SBasisOf<T>& operator+=(SBasisOf<T>& a, const LinearOf<T>& b) {
+ if(a.isZero())
+ a.push_back(b);
+ else
+ a[0] += b;
+ return a;
+}
+template<typename T>
+inline SBasisOf<T>& operator-=(SBasisOf<T>& a, const LinearOf<T>& b) {
+ if(a.isZero())
+ a.push_back(-b);
+ else
+ a[0] -= b;
+ return a;
+}
+
+//IMPL: OffsetableConcept
+/*
+template<typename T>
+inline SBasisOf<T> operator+(const SBasisOf<T> & a, double b) {
+ if(a.isZero()) return LinearOf<T>(b, b);
+ SBasisOf<T> result(a);
+ result[0] += b;
+ return result;
+}
+template<typename T>
+inline SBasisOf<T> operator-(const SBasisOf<T> & a, double b) {
+ if(a.isZero()) return LinearOf<T>(-b, -b);
+ SBasisOf<T> result(a);
+ result[0] -= b;
+ return result;
+}
+template<typename T>
+inline SBasisOf<T>& operator+=(SBasisOf<T>& a, double b) {
+ if(a.isZero())
+ a.push_back(LinearOf<T>(b,b));
+ else
+ a[0] += b;
+ return a;
+}
+template<typename T>
+inline SBasisOf<T>& operator-=(SBasisOf<T>& a, double b) {
+ if(a.isZero())
+ a.push_back(LinearOf<T>(-b,-b));
+ else
+ a[0] -= b;
+ return a;
+}
+*/
+//We can also offset by elements of coeff ring T
+template<typename T>
+inline SBasisOf<T> operator+(const SBasisOf<T> & a, T b) {
+ if(a.isZero()) return LinearOf<T>(b, b);
+ SBasisOf<T> result(a);
+ result[0] += b;
+ return result;
+}
+template<typename T>
+inline SBasisOf<T> operator-(const SBasisOf<T> & a, T b) {
+ if(a.isZero()) return LinearOf<T>(-b, -b);
+ SBasisOf<T> result(a);
+ result[0] -= b;
+ return result;
+}
+template<typename T>
+inline SBasisOf<T>& operator+=(SBasisOf<T>& a, T b) {
+ if(a.isZero())
+ a.push_back(LinearOf<T>(b,b));
+ else
+ a[0] += b;
+ return a;
+}
+template<typename T>
+inline SBasisOf<T>& operator-=(SBasisOf<T>& a, T b) {
+ if(a.isZero())
+ a.push_back(LinearOf<T>(-b,-b));
+ else
+ a[0] -= b;
+ return a;
+}
+
+
+template<typename T>
+SBasisOf<T> shift(SBasisOf<T> const &a, int sh){
+ SBasisOf<T> c = a;
+ if(sh > 0) {
+ c.insert(c.begin(), sh, LinearOf<T>(0,0));
+ } else {
+ //TODO: truncate
+ }
+ return c;
+}
+
+template<typename T>
+SBasisOf<T> shift(LinearOf<T> const &a, int sh) {
+ SBasisOf<T> c;
+ if(sh > 0) {
+ c.insert(c.begin(), sh, LinearOf<T>(0,0));
+ c.push_back(a);
+ }
+ return c;
+}
+
+template<typename T>
+inline SBasisOf<T> truncate(SBasisOf<T> const &a, unsigned terms) {
+ SBasisOf<T> c;
+ c.insert(c.begin(), a.begin(), a.begin() + std::min(terms, (unsigned)a.size()));
+ return c;
+}
+
+template<typename T>
+SBasisOf<T> multiply_add(SBasisOf<T> const &a, SBasisOf<T> const &b, SBasisOf<T> c) {
+ if(a.isZero() || b.isZero())
+ return c;
+ c.resize(a.size() + b.size(), LinearOf<T>(T(0.),T(0.)));
+ for(unsigned j = 0; j < b.size(); j++) {
+ for(unsigned i = j; i < a.size()+j; i++) {
+ T tri = (b[j][1]-b[j][0])*(a[i-j][1]-a[i-j][0]);
+ c[i+1/*shift*/] += LinearOf<T>(-tri);
+ }
+ }
+ for(unsigned j = 0; j < b.size(); j++) {
+ for(unsigned i = j; i < a.size()+j; i++) {
+ for(unsigned dim = 0; dim < 2; dim++)
+ c[i][dim] += b[j][dim]*a[i-j][dim];
+ }
+ }
+ c.normalize();
+ //assert(!(0 == c.back()[0] && 0 == c.back()[1]));
+ return c;
+}
+
+template<typename T>
+SBasisOf<T> multiply(SBasisOf<T> const &a, SBasisOf<T> const &b) {
+ SBasisOf<T> c;
+ if(a.isZero() || b.isZero())
+ return c;
+ return multiply_add(a, b, c);
+}
+
+template<typename T>
+SBasisOf<T> integral(SBasisOf<T> const &c){
+ SBasisOf<T> a;
+ T aTri = T(0.);
+ for(int k = c.size()-1; k >= 0; k--) {
+ aTri = (HatOf<T>(c[k]).d + (k+1)*aTri/2)/(2*k+1);
+ a[k][0] -= aTri/2;
+ a[k][1] += aTri/2;
+ }
+ a.normalize();
+ return a;
+}
+
+template<typename T>
+SBasisOf<T> derivative(SBasisOf<T> const &a){
+ SBasisOf<T> c;
+ c.resize(a.size(), LinearOf<T>());
+ if(a.isZero())
+ return c;
+
+ for(unsigned k = 0; k < a.size()-1; k++) {
+ T d = (2*k+1)*(a[k][1] - a[k][0]);
+
+ c[k][0] = d + (k+1)*a[k+1][0];
+ c[k][1] = d - (k+1)*a[k+1][1];
+ }
+ int k = a.size()-1;
+ T d = (2*k+1)*(a[k][1] - a[k][0]);
+ //TODO: do a real test to know if d==0!
+ if(d == T(0.0))
+ c.pop_back();
+ else {
+ c[k][0] = d;
+ c[k][1] = d;
+ }
+
+ return c;
+}
+
+template<typename T>
+void SBasisOf<T>::derive() { // in place version
+ if(isZero()) return;
+ for(unsigned k = 0; k < this->size()-1; k++) {
+ T d = (2*k+1)*((*this)[k][1] - (*this)[k][0]);
+
+ (*this)[k][0] = d + (k+1)*(*this)[k+1][0];
+ (*this)[k][1] = d - (k+1)*(*this)[k+1][1];
+ }
+ int k = this->size()-1;
+ T d = (2*k+1)*((*this)[k][1] - (*this)[k][0]);
+ if(d == 0)//TODO: give this a meaning for general coeff ring.
+ this->pop_back();
+ else {
+ (*this)[k][0] = d;
+ (*this)[k][1] = d;
+ }
+}
+
+
+template<typename T>
+inline SBasisOf<T> operator*(SBasisOf<T> const & a, SBasisOf<T> const & b) {
+ return multiply(a, b);
+}
+
+template<typename T>
+inline SBasisOf<T>& operator*=(SBasisOf<T>& a, SBasisOf<T> const & b) {
+ a = multiply(a, b);
+ return a;
+}
+
+// a(b(t))
+//TODO: compose all compatibles types!
+template<typename T>
+SBasisOf<T> compose(SBasisOf<T> const &a, SBasisOf<T> const &b){
+ SBasisOf<double> s = multiply((SBasisOf<T>(LinearOf<T>(1,1))-b), b);
+ SBasisOf<T> r;
+
+ for(int i = a.size()-1; i >= 0; i--) {
+ r = multiply_add(r, s, SBasisOf<T>(LinearOf<T>(HatOf<T>(a[i][0]))) - b*a[i][0] + b*a[i][1]);
+ }
+ return r;
+}
+
+template<typename T>
+SBasisOf<T> compose(SBasisOf<T> const &a, SBasisOf<T> const &b, unsigned k){
+ SBasisOf<T> s = multiply((SBasisOf<T>(LinearOf<T>(1,1))-b), b);
+ SBasisOf<T> r;
+
+ for(int i = a.size()-1; i >= 0; i--) {
+ r = multiply_add(r, s, SBasisOf<T>(LinearOf<T>(HatOf<T>(a[i][0]))) - b*a[i][0] + b*a[i][1]);
+ }
+ r.truncate(k);
+ return r;
+}
+template<typename T>
+SBasisOf<T> compose(LinearOf<T> const &a, SBasisOf<T> const &b){
+ return compose(SBasisOf<T>(a),b);
+}
+template<typename T>
+SBasisOf<T> compose(SBasisOf<T> const &a, LinearOf<T> const &b){
+ return compose(a,SBasisOf<T>(b));
+}
+template<typename T>//TODO: don't be so lazy!!
+SBasisOf<T> compose(LinearOf<T> const &a, LinearOf<T> const &b){
+ return compose(SBasisOf<T>(a),SBasisOf<T>(b));
+}
+
+
+
+template<typename T>
+inline SBasisOf<T> portion(const SBasisOf<T> &t, double from, double to) { return compose(t, LinearOf<T>(from, to)); }
+
+// compute f(g)
+template<typename T>
+inline SBasisOf<T>
+SBasisOf<T>::operator()(SBasisOf<T> const & g) const {
+ return compose(*this, g);
+}
+
+template<typename T>
+inline std::ostream &operator<< (std::ostream &out_file, const LinearOf<T> &bo) {
+ out_file << "{" << bo[0] << ", " << bo[1] << "}";
+ return out_file;
+}
+
+template<typename T>
+inline std::ostream &operator<< (std::ostream &out_file, const SBasisOf<T> & p) {
+ for(unsigned i = 0; i < p.size(); i++) {
+ out_file << p[i] << "s^" << i << " + ";
+ }
+ return out_file;
+}
+
+};
+#endif
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|