diff options
Diffstat (limited to 'src/2geom/circle.cpp')
-rw-r--r-- | src/2geom/circle.cpp | 337 |
1 files changed, 337 insertions, 0 deletions
diff --git a/src/2geom/circle.cpp b/src/2geom/circle.cpp new file mode 100644 index 0000000..d97487a --- /dev/null +++ b/src/2geom/circle.cpp @@ -0,0 +1,337 @@ +/** @file + * @brief Circle shape + *//* + * Authors: + * Marco Cecchetti <mrcekets at gmail.com> + * Krzysztof KosiĆski <tweenk.pl@gmail.com> + * + * Copyright 2008-2014 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include <2geom/circle.h> +#include <2geom/ellipse.h> +#include <2geom/elliptical-arc.h> +#include <2geom/numeric/fitting-tool.h> +#include <2geom/numeric/fitting-model.h> + +namespace Geom { + +Rect Circle::boundsFast() const +{ + Point rr(_radius, _radius); + Rect bbox(_center - rr, _center + rr); + return bbox; +} + +void Circle::setCoefficients(Coord A, Coord B, Coord C, Coord D) +{ + if (A == 0) { + THROW_RANGEERROR("square term coefficient == 0"); + } + + //std::cerr << "B = " << B << " C = " << C << " D = " << D << std::endl; + + Coord b = B / A; + Coord c = C / A; + Coord d = D / A; + + _center[X] = -b/2; + _center[Y] = -c/2; + Coord r2 = _center[X] * _center[X] + _center[Y] * _center[Y] - d; + + if (r2 < 0) { + THROW_RANGEERROR("ray^2 < 0"); + } + + _radius = std::sqrt(r2); +} + +void Circle::coefficients(Coord &A, Coord &B, Coord &C, Coord &D) const +{ + A = 1; + B = -2 * _center[X]; + C = -2 * _center[Y]; + D = _center[X] * _center[X] + _center[Y] * _center[Y] - _radius * _radius; +} + +std::vector<Coord> Circle::coefficients() const +{ + std::vector<Coord> c(4); + coefficients(c[0], c[1], c[2], c[3]); + return c; +} + + +Zoom Circle::unitCircleTransform() const +{ + Zoom ret(_radius, _center / _radius); + return ret; +} + +Zoom Circle::inverseUnitCircleTransform() const +{ + if (_radius == 0) { + THROW_RANGEERROR("degenerate circle does not have an inverse unit circle transform"); + } + + Zoom ret(1/_radius, Translate(-_center)); + return ret; +} + +Point Circle::initialPoint() const +{ + Point p(_center); + p[X] += _radius; + return p; +} + +Point Circle::pointAt(Coord t) const { + return _center + Point::polar(t) * _radius; +} + +Coord Circle::valueAt(Coord t, Dim2 d) const { + Coord delta = (d == X ? std::cos(t) : std::sin(t)); + return _center[d] + delta * _radius; +} + +Coord Circle::timeAt(Point const &p) const { + if (_center == p) return 0; + return atan2(p - _center); +} + +Coord Circle::nearestTime(Point const &p) const { + return timeAt(p); +} + +bool Circle::contains(Rect const &r) const +{ + for (unsigned i = 0; i < 4; ++i) { + if (!contains(r.corner(i))) return false; + } + return true; +} + +bool Circle::contains(Circle const &other) const +{ + Coord cdist = distance(_center, other._center); + Coord rdist = fabs(_radius - other._radius); + return cdist <= rdist; +} + +bool Circle::intersects(Line const &l) const +{ + // http://mathworld.wolfram.com/Circle-LineIntersection.html + Coord dr = l.vector().length(); + Coord r = _radius; + Coord D = cross(l.initialPoint(), l.finalPoint()); + Coord delta = r*r * dr*dr - D*D; + if (delta >= 0) return true; + return false; +} + +bool Circle::intersects(Circle const &other) const +{ + Coord cdist = distance(_center, other._center); + Coord rsum = _radius + other._radius; + return cdist <= rsum; +} + + +std::vector<ShapeIntersection> Circle::intersect(Line const &l) const +{ + // http://mathworld.wolfram.com/Circle-LineIntersection.html + Coord dr = l.vector().length(); + Coord dx = l.vector().x(); + Coord dy = l.vector().y(); + Coord D = cross(l.initialPoint() - _center, l.finalPoint() - _center); + Coord delta = _radius*_radius * dr*dr - D*D; + + std::vector<ShapeIntersection> result; + if (delta < 0) return result; + if (delta == 0) { + Coord ix = (D*dy) / (dr*dr); + Coord iy = (-D*dx) / (dr*dr); + Point ip(ix, iy); ip += _center; + result.emplace_back(timeAt(ip), l.timeAt(ip), ip); + return result; + } + + Coord sqrt_delta = std::sqrt(delta); + Coord signmod = dy < 0 ? -1 : 1; + + Coord i1x = (D*dy + signmod * dx * sqrt_delta) / (dr*dr); + Coord i1y = (-D*dx + fabs(dy) * sqrt_delta) / (dr*dr); + Point i1p(i1x, i1y); i1p += _center; + + Coord i2x = (D*dy - signmod * dx * sqrt_delta) / (dr*dr); + Coord i2y = (-D*dx - fabs(dy) * sqrt_delta) / (dr*dr); + Point i2p(i2x, i2y); i2p += _center; + + result.emplace_back(timeAt(i1p), l.timeAt(i1p), i1p); + result.emplace_back(timeAt(i2p), l.timeAt(i2p), i2p); + return result; +} + +std::vector<ShapeIntersection> Circle::intersect(LineSegment const &l) const +{ + std::vector<ShapeIntersection> result = intersect(Line(l)); + filter_line_segment_intersections(result); + return result; +} + +std::vector<ShapeIntersection> Circle::intersect(Circle const &other) const +{ + std::vector<ShapeIntersection> result; + + if (*this == other) { + THROW_INFINITESOLUTIONS(); + } + if (contains(other)) return result; + if (!intersects(other)) return result; + + // See e.g. http://mathworld.wolfram.com/Circle-CircleIntersection.html + // Basically, we figure out where is the third point of a triangle + // with two points in the centers and with edge lengths equal to radii + Point cv = other._center - _center; + Coord d = cv.length(); + Coord R = radius(), r = other.radius(); + + if (d == R + r) { + Point px = lerp(R / d, _center, other._center); + Coord T = timeAt(px), t = other.timeAt(px); + result.emplace_back(T, t, px); + return result; + } + + // q is the distance along the line between centers to the perpendicular line + // that goes through both intersections. + Coord q = (d*d - r*r + R*R) / (2*d); + Point qp = lerp(q/d, _center, other._center); + + // The triangle given by the points: + // _center, qp, intersection + // is a right triangle. Determine the distance between qp and intersection + // using the Pythagorean theorem. + Coord h = std::sqrt(R*R - q*q); + Point qd = (h/d) * cv.cw(); + + // now compute the intersection points + Point x1 = qp + qd; + Point x2 = qp - qd; + + result.emplace_back(timeAt(x1), other.timeAt(x1), x1); + result.emplace_back(timeAt(x2), other.timeAt(x2), x2); + return result; +} + +/** + @param inner a point whose angle with the circle center is inside the angle that the arc spans + */ +EllipticalArc * +Circle::arc(Point const& initial, Point const& inner, Point const& final) const +{ + // TODO native implementation! + Ellipse e(_center[X], _center[Y], _radius, _radius, 0); + return e.arc(initial, inner, final); +} + +bool Circle::operator==(Circle const &other) const +{ + if (_center != other._center) return false; + if (_radius != other._radius) return false; + return true; +} + +D2<SBasis> Circle::toSBasis() const +{ + D2<SBasis> B; + Linear bo = Linear(0, 2 * M_PI); + + B[0] = cos(bo,4); + B[1] = sin(bo,4); + + B = B * _radius + _center; + + return B; +} + + +void Circle::fit(std::vector<Point> const& points) +{ + size_t sz = points.size(); + if (sz < 2) { + THROW_RANGEERROR("fitting error: too few points passed"); + } + if (sz == 2) { + _center = points[0] * 0.5 + points[1] * 0.5; + _radius = distance(points[0], points[1]) / 2; + return; + } + + NL::LFMCircle model; + NL::least_squeares_fitter<NL::LFMCircle> fitter(model, sz); + + for (size_t i = 0; i < sz; ++i) { + fitter.append(points[i]); + } + fitter.update(); + + NL::Vector z(sz, 0.0); + model.instance(*this, fitter.result(z)); +} + + +bool are_near(Circle const &a, Circle const &b, Coord eps) +{ + // to check whether no point on a is further than eps from b, + // we check two things: + // 1. if radii differ by more than eps, there is definitely a point that fails + // 2. if they differ by less, we check the centers. They have to be closer + // together if the radius differs, since the maximum distance will be + // equal to sum of radius difference and distance between centers. + if (!are_near(a.radius(), b.radius(), eps)) return false; + Coord adjusted_eps = eps - fabs(a.radius() - b.radius()); + return are_near(a.center(), b.center(), adjusted_eps); +} + +std::ostream &operator<<(std::ostream &out, Circle const &c) +{ + out << "Circle(" << c.center() << ", " << format_coord_nice(c.radius()) << ")"; + return out; +} + +} // end namespace Geom + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |