diff options
Diffstat (limited to 'src/2geom/conicsec.cpp')
-rw-r--r-- | src/2geom/conicsec.cpp | 1640 |
1 files changed, 1640 insertions, 0 deletions
diff --git a/src/2geom/conicsec.cpp b/src/2geom/conicsec.cpp new file mode 100644 index 0000000..0865c0e --- /dev/null +++ b/src/2geom/conicsec.cpp @@ -0,0 +1,1640 @@ +/* + * Authors: + * Nathan Hurst <njh@njhurst.com + * + * Copyright 2009 authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + + +#include <2geom/conicsec.h> +#include <2geom/conic_section_clipper.h> +#include <2geom/numeric/fitting-tool.h> +#include <2geom/numeric/fitting-model.h> + + +// File: convert.h +#include <utility> +#include <sstream> +#include <stdexcept> +#include <optional> + +namespace Geom +{ + +LineSegment intersection(Line l, Rect r) { + std::optional<LineSegment> seg = l.clip(r); + if (seg) { + return *seg; + } else { + return LineSegment(Point(0,0), Point(0,0)); + } +} + +static double det(Point a, Point b) { + return a[0]*b[1] - a[1]*b[0]; +} + +template <typename T> +static T det(T a, T b, T c, T d) { + return a*d - b*c; +} + +template <typename T> +static T det(T M[2][2]) { + return M[0][0]*M[1][1] - M[1][0]*M[0][1]; +} + +template <typename T> +static T det3(T M[3][3]) { + return ( M[0][0] * det(M[1][1], M[1][2], + M[2][1], M[2][2]) + -M[1][0] * det(M[0][1], M[0][2], + M[2][1], M[2][2]) + +M[2][0] * det(M[0][1], M[0][2], + M[1][1], M[1][2])); +} + +static double boxprod(Point a, Point b, Point c) { + return det(a,b) - det(a,c) + det(b,c); +} + +class BadConversion : public std::runtime_error { +public: + BadConversion(const std::string& s) + : std::runtime_error(s) + { } +}; + +template <typename T> +inline std::string stringify(T x) +{ + std::ostringstream o; + if (!(o << x)) + throw BadConversion("stringify(T)"); + return o.str(); +} + + /* A G4 continuous cubic parametric approximation for rational quadratics. + See + An analysis of cubic approximation schemes for conic sections + Michael Floater + SINTEF + + This is less accurate overall than some of his other schemes, but + produces very smooth joins and is still optimally h^-6 + convergent. + */ + +double RatQuad::lambda() const { + return 2*(6*w*w +1 -std::sqrt(3*w*w+1))/(12*w*w+3); +} + +RatQuad RatQuad::fromPointsTangents(Point P0, Point dP0, + Point P, + Point P2, Point dP2) { + Line Line0 = Line::from_origin_and_vector(P0, dP0); + Line Line2 = Line::from_origin_and_vector(P2, dP2); + try { + OptCrossing oc = intersection(Line0, Line2); + if(!oc) // what to do? + return RatQuad(Point(), Point(), Point(), 0); // need opt really + //assert(0); + Point P1 = Line0.pointAt((*oc).ta); + double triarea = boxprod(P0, P1, P2); +// std::cout << "RatQuad::fromPointsTangents: triarea = " << triarea << std::endl; + if (triarea == 0) + { + return RatQuad(P0, 0.5*(P0+P2), P2, 1); + } + double tau0 = boxprod(P, P1, P2)/triarea; + double tau1 = boxprod(P0, P, P2)/triarea; + double tau2 = boxprod(P0, P1, P)/triarea; + if (tau0 == 0 || tau1 == 0 || tau2 == 0) + { + return RatQuad(P0, 0.5*(P0+P2), P2, 1); + } + double w = tau1/(2*std::sqrt(tau0*tau2)); +// std::cout << "RatQuad::fromPointsTangents: tau0 = " << tau0 << std::endl; +// std::cout << "RatQuad::fromPointsTangents: tau1 = " << tau1 << std::endl; +// std::cout << "RatQuad::fromPointsTangents: tau2 = " << tau2 << std::endl; +// std::cout << "RatQuad::fromPointsTangents: w = " << w << std::endl; + return RatQuad(P0, P1, P2, w); + } catch(Geom::InfiniteSolutions const&) { + return RatQuad(P0, 0.5*(P0+P2), P2, 1); + } + return RatQuad(Point(), Point(), Point(), 0); // need opt really +} + +RatQuad RatQuad::circularArc(Point P0, Point P1, Point P2) { + return RatQuad(P0, P1, P2, dot(unit_vector(P0 - P1), unit_vector(P0 - P2))); +} + + +CubicBezier RatQuad::toCubic() const { + return toCubic(lambda()); +} + +CubicBezier RatQuad::toCubic(double lamb) const { + return CubicBezier(P[0], + (1-lamb)*P[0] + lamb*P[1], + (1-lamb)*P[2] + lamb*P[1], + P[2]); +} + +Point RatQuad::pointAt(double t) const { + Bezier xt(P[0][0], P[1][0]*w, P[2][0]); + Bezier yt(P[0][1], P[1][1]*w, P[2][1]); + double wt = Bezier(1, w, 1).valueAt(t); + return Point(xt.valueAt(t)/wt, + yt.valueAt(t)/wt); +} + +void RatQuad::split(RatQuad &a, RatQuad &b) const { + a.P[0] = P[0]; + b.P[2] = P[2]; + a.P[1] = (P[0]+w*P[1])/(1+w); + b.P[1] = (w*P[1]+P[2])/(1+w); + a.w = b.w = std::sqrt((1+w)/2); + a.P[2] = b.P[0] = (0.5*a.P[1]+0.5*b.P[1]); +} + + +D2<SBasis> RatQuad::hermite() const { + SBasis t = Linear(0, 1); + SBasis omt = Linear(1, 0); + + D2<SBasis> out(omt*omt*P[0][0]+2*omt*t*P[1][0]*w+t*t*P[2][0], + omt*omt*P[0][1]+2*omt*t*P[1][1]*w+t*t*P[2][1]); + for(int dim = 0; dim < 2; dim++) { + out[dim] = divide(out[dim], (omt*omt+2*omt*t*w+t*t), 2); + } + return out; +} + + std::vector<SBasis> RatQuad::homogeneous() const { + std::vector<SBasis> res(3, SBasis()); + Bezier xt(P[0][0], P[1][0]*w, P[2][0]); + bezier_to_sbasis(res[0],xt); + Bezier yt(P[0][1], P[1][1]*w, P[2][1]); + bezier_to_sbasis(res[1],yt); + Bezier wt(1, w, 1); + bezier_to_sbasis(res[2],wt); + return res; +} + +#if 0 + std::string xAx::categorise() const { + double M[3][3] = {{c[0], c[1], c[3]}, + {c[1], c[2], c[4]}, + {c[3], c[4], c[5]}}; + double D = det3(M); + if (c[0] == 0 && c[1] == 0 && c[2] == 0) + return "line"; + std::string res = stringify(D); + double descr = c[1]*c[1] - c[0]*c[2]; + if (descr < 0) { + if (c[0] == c[2] && c[1] == 0) + return res + "circle"; + return res + "ellipse"; + } else if (descr == 0) { + return res + "parabola"; + } else if (descr > 0) { + if (c[0] + c[2] == 0) { + if (D == 0) + return res + "two lines"; + return res + "rectangular hyperbola"; + } + return res + "hyperbola"; + + } + return "no idea!"; +} +#endif + + +std::vector<Point> decompose_degenerate(xAx const & C1, xAx const & C2, xAx const & xC0) { + std::vector<Point> res; + double A[2][2] = {{2*xC0.c[0], xC0.c[1]}, + {xC0.c[1], 2*xC0.c[2]}}; +//Point B0 = xC0.bottom(); + double const determ = det(A); + //std::cout << determ << "\n"; + if (fabs(determ) >= 1e-20) { // hopeful, I know + Geom::Coord const ideterm = 1.0 / determ; + + double b[2] = {-xC0.c[3], -xC0.c[4]}; + Point B0((A[1][1]*b[0] -A[0][1]*b[1]), + (-A[1][0]*b[0] + A[0][0]*b[1])); + B0 *= ideterm; + Point n0, n1; + // Are these just the eigenvectors of A11? + if(xC0.c[0] == xC0.c[2]) { + double b = 0.5*xC0.c[1]/xC0.c[0]; + double c = xC0.c[2]/xC0.c[0]; + //assert(fabs(b*b-c) > 1e-10); + double d = std::sqrt(b*b-c); + //assert(fabs(b-d) > 1e-10); + n0 = Point(1, b+d); + n1 = Point(1, b-d); + } else if(fabs(xC0.c[0]) > fabs(xC0.c[2])) { + double b = 0.5*xC0.c[1]/xC0.c[0]; + double c = xC0.c[2]/xC0.c[0]; + //assert(fabs(b*b-c) > 1e-10); + double d = std::sqrt(b*b-c); + //assert(fabs(b-d) > 1e-10); + n0 = Point(1, b+d); + n1 = Point(1, b-d); + } else { + double b = 0.5*xC0.c[1]/xC0.c[2]; + double c = xC0.c[0]/xC0.c[2]; + //assert(fabs(b*b-c) > 1e-10); + double d = std::sqrt(b*b-c); + //assert(fabs(b-d) > 1e-10); + n0 = Point(b+d, 1); + n1 = Point(b-d, 1); + } + + Line L0 = Line::from_origin_and_vector(B0, rot90(n0)); + Line L1 = Line::from_origin_and_vector(B0, rot90(n1)); + + std::vector<double> rts = C1.roots(L0); + for(double rt : rts) { + Point P = L0.pointAt(rt); + res.push_back(P); + } + rts = C1.roots(L1); + for(double rt : rts) { + Point P = L1.pointAt(rt); + res.push_back(P); + } + } else { + // single or double line + // check for completely zero case (what to do?) + assert(xC0.c[0] || xC0.c[1] || + xC0.c[2] || xC0.c[3] || + xC0.c[4] || xC0.c[5]); + Point trial_pt(0,0); + Point g = xC0.gradient(trial_pt); + if(L2sq(g) == 0) { + trial_pt[0] += 1; + g = xC0.gradient(trial_pt); + if(L2sq(g) == 0) { + trial_pt[1] += 1; + g = xC0.gradient(trial_pt); + if(L2sq(g) == 0) { + trial_pt[0] += 1; + g = xC0.gradient(trial_pt); + if(L2sq(g) == 0) { + trial_pt = Point(1.5,0.5); + g = xC0.gradient(trial_pt); + } + } + } + } + //std::cout << trial_pt << ", " << g << "\n"; + /** + * At this point we have tried up to 4 points: 0,0, 1,0, 1,1, 2,1, 1.5,1.5 + * + * No degenerate conic can pass through these points, so we can assume + * that we've found a perpendicular to the double line. + * Proof: + * any degenerate must consist of at most 2 lines. 1.5,0.5 is not on any pair of lines + * passing through the previous 4 trials. + * + * alternatively, there may be a way to determine this directly from xC0 + */ + assert(L2sq(g) != 0); + + Line Lx = Line::from_origin_and_vector(trial_pt, g); // a line along the gradient + std::vector<double> rts = xC0.roots(Lx); + for(double rt : rts) { + Point P0 = Lx.pointAt(rt); + //std::cout << P0 << "\n"; + Line L = Line::from_origin_and_vector(P0, rot90(g)); + std::vector<double> cnrts; + // It's very likely that at least one of the conics is degenerate, this will hopefully pick the more generate of the two. + if(fabs(C1.hessian().det()) > fabs(C2.hessian().det())) + cnrts = C1.roots(L); + else + cnrts = C2.roots(L); + for(double cnrt : cnrts) { + Point P = L.pointAt(cnrt); + res.push_back(P); + } + } + } + return res; +} + +double xAx_descr(xAx const & C) { + double mC[3][3] = {{C.c[0], (C.c[1])/2, (C.c[3])/2}, + {(C.c[1])/2, C.c[2], (C.c[4])/2}, + {(C.c[3])/2, (C.c[4])/2, C.c[5]}}; + + return det3(mC); +} + + +std::vector<Point> intersect(xAx const & C1, xAx const & C2) { + // You know, if either of the inputs are degenerate we should use them first! + if(xAx_descr(C1) == 0) { + return decompose_degenerate(C1, C2, C1); + } + if(xAx_descr(C2) == 0) { + return decompose_degenerate(C1, C2, C2); + } + std::vector<Point> res; + SBasis T(Linear(-1,1)); + SBasis S(Linear(1,1)); + SBasis C[3][3] = {{T*C1.c[0]+S*C2.c[0], (T*C1.c[1]+S*C2.c[1])/2, (T*C1.c[3]+S*C2.c[3])/2}, + {(T*C1.c[1]+S*C2.c[1])/2, T*C1.c[2]+S*C2.c[2], (T*C1.c[4]+S*C2.c[4])/2}, + {(T*C1.c[3]+S*C2.c[3])/2, (T*C1.c[4]+S*C2.c[4])/2, T*C1.c[5]+S*C2.c[5]}}; + + SBasis D = det3(C); + std::vector<double> rts = Geom::roots(D); + if(rts.empty()) { + T = Linear(1,1); + S = Linear(-1,1); + SBasis C[3][3] = {{T*C1.c[0]+S*C2.c[0], (T*C1.c[1]+S*C2.c[1])/2, (T*C1.c[3]+S*C2.c[3])/2}, + {(T*C1.c[1]+S*C2.c[1])/2, T*C1.c[2]+S*C2.c[2], (T*C1.c[4]+S*C2.c[4])/2}, + {(T*C1.c[3]+S*C2.c[3])/2, (T*C1.c[4]+S*C2.c[4])/2, T*C1.c[5]+S*C2.c[5]}}; + + D = det3(C); + rts = Geom::roots(D); + } + // at this point we have a T and S and perhaps some roots that represent our degenerate conic + // Let's just pick one randomly (can we do better?) + //for(unsigned i = 0; i < rts.size(); i++) { + if(!rts.empty()) { + unsigned i = 0; + double t = T.valueAt(rts[i]); + double s = S.valueAt(rts[i]); + xAx xC0 = C1*t + C2*s; + //::draw(cr, xC0, screen_rect); // degen + + return decompose_degenerate(C1, C2, xC0); + + + } else { + std::cout << "What?" << std::endl; + ;//std::cout << D << "\n"; + } + return res; +} + + +xAx xAx::fromPoint(Point p) { + return xAx(1., 0, 1., -2*p[0], -2*p[1], dot(p,p)); +} + +xAx xAx::fromDistPoint(Point /*p*/, double /*d*/) { + return xAx();//1., 0, 1., -2*(1+d)*p[0], -2*(1+d)*p[1], dot(p,p)+d*d); +} + +xAx xAx::fromLine(Point n, double d) { + return xAx(n[0]*n[0], 2*n[0]*n[1], n[1]*n[1], 2*d*n[0], 2*d*n[1], d*d); +} + +xAx xAx::fromLine(Line l) { + double dist; + Point norm = l.normalAndDist(dist); + + return fromLine(norm, dist); +} + +xAx xAx::fromPoints(std::vector<Geom::Point> const &pt) { + Geom::NL::Vector V(pt.size(), -1.0); + Geom::NL::Matrix M(pt.size(), 5); + for(unsigned i = 0; i < pt.size(); i++) { + Geom::Point P = pt[i]; + Geom::NL::VectorView vv = M.row_view(i); + vv[0] = P[0]*P[0]; + vv[1] = P[0]*P[1]; + vv[2] = P[1]*P[1]; + vv[3] = P[0]; + vv[4] = P[1]; + } + + Geom::NL::LinearSystem ls(M, V); + + Geom::NL::Vector x = ls.SV_solve(); + return Geom::xAx(x[0], x[1], x[2], x[3], x[4], 1); + +} + + + +double xAx::valueAt(Point P) const { + return evaluate_at(P[0], P[1]); +} + +xAx xAx::scale(double sx, double sy) const { + return xAx(c[0]*sx*sx, c[1]*sx*sy, c[2]*sy*sy, + c[3]*sx, c[4]*sy, c[5]); +} + +Point xAx::gradient(Point p) const{ + double x = p[0]; + double y = p[1]; + return Point(2*c[0]*x + c[1]*y + c[3], + c[1]*x + 2*c[2]*y + c[4]); +} + +xAx xAx::operator-(xAx const &b) const { + xAx res; + for(int i = 0; i < 6; i++) { + res.c[i] = c[i] - b.c[i]; + } + return res; +} +xAx xAx::operator+(xAx const &b) const { + xAx res; + for(int i = 0; i < 6; i++) { + res.c[i] = c[i] + b.c[i]; + } + return res; +} +xAx xAx::operator+(double const &b) const { + xAx res; + for(int i = 0; i < 5; i++) { + res.c[i] = c[i]; + } + res.c[5] = c[5] + b; + return res; +} + +xAx xAx::operator*(double const &b) const { + xAx res; + for(int i = 0; i < 6; i++) { + res.c[i] = c[i] * b; + } + return res; +} + + std::vector<Point> xAx::crossings(Rect r) const { + std::vector<Point> res; + for(int ei = 0; ei < 4; ei++) { + Geom::LineSegment ls(r.corner(ei), r.corner(ei+1)); + D2<SBasis> lssb = ls.toSBasis(); + SBasis edge_curve = evaluate_at(lssb[0], lssb[1]); + std::vector<double> rts = Geom::roots(edge_curve); + for(double rt : rts) { + res.push_back(lssb.valueAt(rt)); + } + } + return res; +} + + std::optional<RatQuad> xAx::toCurve(Rect const & bnd) const { + std::vector<Point> crs = crossings(bnd); + if(crs.size() == 1) { + Point A = crs[0]; + Point dA = rot90(gradient(A)); + if(L2sq(dA) <= 1e-10) { // perhaps a single point? + return std::optional<RatQuad> (); + } + LineSegment ls = intersection(Line::from_origin_and_vector(A, dA), bnd); + return RatQuad::fromPointsTangents(A, dA, ls.pointAt(0.5), ls[1], dA); + } + else if(crs.size() >= 2 && crs.size() < 4) { + Point A = crs[0]; + Point C = crs[1]; + if(crs.size() == 3) { + if(distance(A, crs[2]) > distance(A, C)) + C = crs[2]; + else if(distance(C, crs[2]) > distance(A, C)) + A = crs[2]; + } + Line bisector = make_bisector_line(LineSegment(A, C)); + std::vector<double> bisect_rts = this->roots(bisector); + if(!bisect_rts.empty()) { + int besti = -1; + for(unsigned i =0; i < bisect_rts.size(); i++) { + Point p = bisector.pointAt(bisect_rts[i]); + if(bnd.contains(p)) { + besti = i; + } + } + if(besti >= 0) { + Point B = bisector.pointAt(bisect_rts[besti]); + + Point dA = gradient(A); + Point dC = gradient(C); + if(L2sq(dA) <= 1e-10 || L2sq(dC) <= 1e-10) { + return RatQuad::fromPointsTangents(A, C-A, B, C, A-C); + } + + RatQuad rq = RatQuad::fromPointsTangents(A, rot90(dA), + B, C, rot90(dC)); + return rq; + //std::vector<SBasis> hrq = rq.homogeneous(); + /*SBasis vertex_poly = evaluate_at(hrq[0], hrq[1], hrq[2]); + std::vector<double> rts = roots(vertex_poly); + for(unsigned i = 0; i < rts.size(); i++) { + //draw_circ(cr, Point(rq.pointAt(rts[i]))); + }*/ + } + } + } + return std::optional<RatQuad>(); +} + + std::vector<double> xAx::roots(Point d, Point o) const { + // Find the roots on line l + // form the quadratic Q(t) = 0 by composing l with xAx + double q2 = c[0]*d[0]*d[0] + c[1]*d[0]*d[1] + c[2]*d[1]*d[1]; + double q1 = (2*c[0]*d[0]*o[0] + + c[1]*(d[0]*o[1]+d[1]*o[0]) + + 2*c[2]*d[1]*o[1] + + c[3]*d[0] + c[4]*d[1]); + double q0 = c[0]*o[0]*o[0] + c[1]*o[0]*o[1] + c[2]*o[1]*o[1] + c[3]*o[0] + c[4]*o[1] + c[5]; + std::vector<double> r; + if(q2 == 0) { + if(q1 == 0) { + return r; + } + r.push_back(-q0/q1); + } else { + double desc = q1*q1 - 4*q2*q0; + /*std::cout << q2 << ", " + << q1 << ", " + << q0 << "; " + << desc << "\n";*/ + if (desc < 0) + return r; + else if (desc == 0) + r.push_back(-q1/(2*q2)); + else { + desc = std::sqrt(desc); + double t; + if (q1 == 0) + { + t = -0.5 * desc; + } + else + { + t = -0.5 * (q1 + sgn(q1) * desc); + } + r.push_back(t/q2); + r.push_back(q0/t); + } + } + return r; +} + +std::vector<double> xAx::roots(Line const &l) const { + return roots(l.versor(), l.origin()); +} + +Interval xAx::quad_ex(double a, double b, double c, Interval ivl) { + double cx = -b*0.5/a; + Interval bnds((a*ivl.min()+b)*ivl.min()+c, (a*ivl.max()+b)*ivl.max()+c); + if(ivl.contains(cx)) + bnds.expandTo((a*cx+b)*cx+c); + return bnds; +} + +Geom::Affine xAx::hessian() const { + Geom::Affine m(2*c[0], c[1], + c[1], 2*c[2], + 0, 0); + return m; +} + + +std::optional<Point> solve(double A[2][2], double b[2]) { + double const determ = det(A); + if (determ != 0.0) { // hopeful, I know + Geom::Coord const ideterm = 1.0 / determ; + + return Point ((A[1][1]*b[0] -A[0][1]*b[1]), + (-A[1][0]*b[0] + A[0][0]*b[1]))* ideterm; + } else { + return std::optional<Point>(); + } +} + +std::optional<Point> xAx::bottom() const { + double A[2][2] = {{2*c[0], c[1]}, + {c[1], 2*c[2]}}; + double b[2] = {-c[3], -c[4]}; + return solve(A, b); + //return Point(-c[3], -c[4])*hessian().inverse(); +} + +Interval xAx::extrema(Rect r) const { + if (c[0] == 0 && c[1] == 0 && c[2] == 0) { + Interval ext(valueAt(r.corner(0))); + for(int i = 1; i < 4; i++) + ext |= Interval(valueAt(r.corner(i))); + return ext; + } + double k = r[X].min(); + Interval ext = quad_ex(c[2], c[1]*k+c[4], (c[0]*k + c[3])*k + c[5], r[Y]); + k = r[X].max(); + ext |= quad_ex(c[2], c[1]*k+c[4], (c[0]*k + c[3])*k + c[5], r[Y]); + k = r[Y].min(); + ext |= quad_ex(c[0], c[1]*k+c[3], (c[2]*k + c[4])*k + c[5], r[X]); + k = r[Y].max(); + ext |= quad_ex(c[0], c[1]*k+c[3], (c[2]*k + c[4])*k + c[5], r[X]); + std::optional<Point> B0 = bottom(); + if (B0 && r.contains(*B0)) + ext.expandTo(0); + return ext; +} + + + + + + + + + +/* + * helper functions + */ + +bool at_infinity (Point const& p) +{ + if (p[X] == infinity() || p[X] == -infinity() + || p[Y] == infinity() || p[Y] == -infinity()) + { + return true; + } + return false; +} + +inline +double signed_triangle_area (Point const& p1, Point const& p2, Point const& p3) +{ + return (cross(p2, p3) - cross(p1, p3) + cross(p1, p2)); +} + + + +/* + * Define a conic section by computing the one that fits better with + * N points. + * + * points: points to fit + * + * precondition: there must be at least 5 non-overlapping points + */ +void xAx::set(std::vector<Point> const& points) +{ + size_t sz = points.size(); + if (sz < 5) + { + THROW_RANGEERROR("fitting error: too few points passed"); + } + NL::LFMConicSection model; + NL::least_squeares_fitter<NL::LFMConicSection> fitter(model, sz); + + for (size_t i = 0; i < sz; ++i) + { + fitter.append(points[i]); + } + fitter.update(); + + NL::Vector z(sz, 0.0); + model.instance(*this, fitter.result(z)); +} + +/* + * Define a section conic by providing the coordinates of one of its vertex, + * the major axis inclination angle and the coordinates of its foci + * with respect to the unidimensional system defined by the major axis with + * origin set at the provided vertex. + * + * _vertex : section conic vertex V + * _angle : section conic major axis angle + * _dist1: +/-distance btw V and nearest focus + * _dist2: +/-distance btw V and farest focus + * + * prerequisite: _dist1 <= _dist2 + */ +void xAx::set (const Point& _vertex, double _angle, double _dist1, double _dist2) +{ + using std::swap; + + if (_dist2 == infinity() || _dist2 == -infinity()) // parabola + { + if (_dist1 == infinity()) // degenerate to a line + { + Line l(_vertex, _angle); + std::vector<double> lcoeff = l.coefficients(); + coeff(3) = lcoeff[0]; + coeff(4) = lcoeff[1]; + coeff(5) = lcoeff[2]; + return; + } + + // y^2 - 4px == 0 + double cD = -4 * _dist1; + + double cosa = std::cos (_angle); + double sina = std::sin (_angle); + double cca = cosa * cosa; + double ssa = sina * sina; + double csa = cosa * sina; + + coeff(0) = ssa; + coeff(1) = -2 * csa; + coeff(2) = cca; + coeff(3) = cD * cosa; + coeff(4) = cD * sina; + + double VxVx = _vertex[X] * _vertex[X]; + double VxVy = _vertex[X] * _vertex[Y]; + double VyVy = _vertex[Y] * _vertex[Y]; + + coeff(5) = coeff(0) * VxVx + coeff(1) * VxVy + coeff(2) * VyVy + - coeff(3) * _vertex[X] - coeff(4) * _vertex[Y]; + coeff(3) -= (2 * coeff(0) * _vertex[X] + coeff(1) * _vertex[Y]); + coeff(4) -= (2 * coeff(2) * _vertex[Y] + coeff(1) * _vertex[X]); + + return; + } + + if (std::fabs(_dist1) > std::fabs(_dist2)) + { + swap (_dist1, _dist2); + } + if (_dist1 < 0) + { + _angle -= M_PI; + _dist1 = -_dist1; + _dist2 = -_dist2; + } + + // ellipse and hyperbola + double lin_ecc = (_dist2 - _dist1) / 2; + double rx = (_dist2 + _dist1) / 2; + + double cA = rx * rx - lin_ecc * lin_ecc; + double cC = rx * rx; + double cF = - cA * cC; +// std::cout << "cA: " << cA << std::endl; +// std::cout << "cC: " << cC << std::endl; +// std::cout << "cF: " << cF << std::endl; + + double cosa = std::cos (_angle); + double sina = std::sin (_angle); + double cca = cosa * cosa; + double ssa = sina * sina; + double csa = cosa * sina; + + coeff(0) = cca * cA + ssa * cC; + coeff(2) = ssa * cA + cca * cC; + coeff(1) = 2 * csa * (cA - cC); + + Point C (rx * cosa + _vertex[X], rx * sina + _vertex[Y]); + double CxCx = C[X] * C[X]; + double CxCy = C[X] * C[Y]; + double CyCy = C[Y] * C[Y]; + + coeff(3) = -2 * coeff(0) * C[X] - coeff(1) * C[Y]; + coeff(4) = -2 * coeff(2) * C[Y] - coeff(1) * C[X]; + coeff(5) = cF + coeff(0) * CxCx + coeff(1) * CxCy + coeff(2) * CyCy; +} + +/* + * Define a conic section by providing one of its vertex and its foci. + * + * _vertex: section conic vertex + * _focus1: section conic focus + * _focus2: section conic focus + */ +void xAx::set (const Point& _vertex, const Point& _focus1, const Point& _focus2) +{ + if (at_infinity(_vertex)) + { + THROW_RANGEERROR("case not handled: vertex at infinity"); + } + if (at_infinity(_focus2)) + { + if (at_infinity(_focus1)) + { + THROW_RANGEERROR("case not handled: both focus at infinity"); + } + Point VF = _focus1 - _vertex; + double dist1 = L2(VF); + double angle = atan2(VF); + set(_vertex, angle, dist1, infinity()); + return; + } + else if (at_infinity(_focus1)) + { + Point VF = _focus2 - _vertex; + double dist1 = L2(VF); + double angle = atan2(VF); + set(_vertex, angle, dist1, infinity()); + return; + } + assert (are_collinear (_vertex, _focus1, _focus2)); + if (!are_near(_vertex, _focus1)) + { + Point VF = _focus1 - _vertex; + Line axis(_vertex, _focus1); + double angle = atan2(VF); + double dist1 = L2(VF); + double dist2 = distance (_vertex, _focus2); + double t = axis.timeAt(_focus2); + if (t < 0) dist2 = -dist2; +// std::cout << "t = " << t << std::endl; +// std::cout << "dist2 = " << dist2 << std::endl; + set (_vertex, angle, dist1, dist2); + } + else if (!are_near(_vertex, _focus2)) + { + Point VF = _focus2 - _vertex; + double angle = atan2(VF); + double dist1 = 0; + double dist2 = L2(VF); + set (_vertex, angle, dist1, dist2); + } + else + { + coeff(0) = coeff(2) = 1; + coeff(1) = coeff(3) = coeff(4) = coeff(5) = 0; + } +} + +/* + * Define a conic section by passing a focus, the related directrix, + * and the eccentricity (e) + * (e < 1 -> ellipse; e = 1 -> parabola; e > 1 -> hyperbola) + * + * _focus: a focus of the conic section + * _directrix: the directrix related to the given focus + * _eccentricity: the eccentricity parameter of the conic section + */ +void xAx::set (const Point & _focus, const Line & _directrix, double _eccentricity) +{ + Point O = _directrix.pointAt (_directrix.timeAtProjection (_focus)); + //std::cout << "O = " << O << std::endl; + Point OF = _focus - O; + double p = L2(OF); + + coeff(0) = 1 - _eccentricity * _eccentricity; + coeff(1) = 0; + coeff(2) = 1; + coeff(3) = -2 * p; + coeff(4) = 0; + coeff(5) = p * p; + + double angle = atan2 (OF); + + (*this) = rotate (angle); + //std::cout << "O = " << O << std::endl; + (*this) = translate (O); +} + +/* + * Made up a degenerate conic section as a pair of lines + * + * l1, l2: lines that made up the conic section + */ +void xAx::set (const Line& l1, const Line& l2) +{ + std::vector<double> cl1 = l1.coefficients(); + std::vector<double> cl2 = l2.coefficients(); + + coeff(0) = cl1[0] * cl2[0]; + coeff(2) = cl1[1] * cl2[1]; + coeff(5) = cl1[2] * cl2[2]; + coeff(1) = cl1[0] * cl2[1] + cl1[1] * cl2[0]; + coeff(3) = cl1[0] * cl2[2] + cl1[2] * cl2[0]; + coeff(4) = cl1[1] * cl2[2] + cl1[2] * cl2[1]; +} + + + +/* + * Return the section conic kind + */ +xAx::kind_t xAx::kind () const +{ + + xAx conic(*this); + NL::SymmetricMatrix<3> C = conic.get_matrix(); + NL::ConstSymmetricMatrixView<2> A = C.main_minor_const_view(); + + double t1 = trace(A); + double t2 = det(A); + //double T3 = det(C); + int st1 = trace_sgn(A); + int st2 = det_sgn(A); + int sT3 = det_sgn(C); + + //std::cout << "T3 = " << T3 << std::endl; + //std::cout << "sT3 = " << sT3 << std::endl; + //std::cout << "t2 = " << t2 << std::endl; + //std::cout << "t1 = " << t1 << std::endl; + //std::cout << "st2 = " << st2 << std::endl; + + if (sT3 != 0) + { + if (st2 == 0) + { + return PARABOLA; + } + else if (st2 == 1) + { + + if (sT3 * st1 < 0) + { + NL::SymmetricMatrix<2> discr; + discr(0,0) = 4; discr(1,1) = t2; discr(1,0) = t1; + int discr_sgn = - det_sgn (discr); + //std::cout << "t1 * t1 - 4 * t2 = " + // << (t1 * t1 - 4 * t2) << std::endl; + //std::cout << "discr_sgn = " << discr_sgn << std::endl; + if (discr_sgn == 0) + { + return CIRCLE; + } + else + { + return REAL_ELLIPSE; + } + } + else // sT3 * st1 > 0 + { + return IMAGINARY_ELLIPSE; + } + } + else // t2 < 0 + { + if (st1 == 0) + { + return RECTANGULAR_HYPERBOLA; + } + else + { + return HYPERBOLA; + } + } + } + else // T3 == 0 + { + if (st2 == 0) + { + //double T2 = NL::trace<2>(C); + int sT2 = NL::trace_sgn<2>(C); + //std::cout << "T2 = " << T2 << std::endl; + //std::cout << "sT2 = " << sT2 << std::endl; + + if (sT2 == 0) + { + return DOUBLE_LINE; + } + if (sT2 == -1) + { + return TWO_REAL_PARALLEL_LINES; + } + else // T2 > 0 + { + return TWO_IMAGINARY_PARALLEL_LINES; + } + } + else if (st2 == -1) + { + return TWO_REAL_CROSSING_LINES; + } + else // t2 > 0 + { + return TWO_IMAGINARY_CROSSING_LINES; + } + } + return UNKNOWN; +} + +/* + * Return a string representing the conic section kind + */ +std::string xAx::categorise() const +{ + kind_t KIND = kind(); + + switch (KIND) + { + case PARABOLA : + return "parabola"; + case CIRCLE : + return "circle"; + case REAL_ELLIPSE : + return "real ellispe"; + case IMAGINARY_ELLIPSE : + return "imaginary ellispe"; + case RECTANGULAR_HYPERBOLA : + return "rectangular hyperbola"; + case HYPERBOLA : + return "hyperbola"; + case DOUBLE_LINE : + return "double line"; + case TWO_REAL_PARALLEL_LINES : + return "two real parallel lines"; + case TWO_IMAGINARY_PARALLEL_LINES : + return "two imaginary parallel lines"; + case TWO_REAL_CROSSING_LINES : + return "two real crossing lines"; + case TWO_IMAGINARY_CROSSING_LINES : + return "two imaginary crossing lines"; + default : + return "unknown"; + } +} + +/* + * Compute the solutions of the conic section algebraic equation with respect to + * one coordinate after substituting to the other coordinate the passed value + * + * sol: the computed solutions + * v: the provided value + * d: the index of the coordinate the passed value have to be substituted to + */ +void xAx::roots (std::vector<double>& sol, Coord v, Dim2 d) const +{ + sol.clear(); + if (d < 0 || d > Y) + { + THROW_RANGEERROR("dimension parameter out of range"); + } + + // p*t^2 + q*t + r = 0; + double p, q, r; + + if (d == X) + { + p = coeff(2); + q = coeff(4) + coeff(1) * v; + r = coeff(5) + (coeff(0) * v + coeff(3)) * v; + } + else + { + p = coeff(0); + q = coeff(3) + coeff(1) * v; + r = coeff(5) + (coeff(2) * v + coeff(4)) * v; + } + + if (p == 0) + { + if (q == 0) return; + double t = -r/q; + sol.push_back(t); + return; + } + + if (q == 0) + { + if ((p > 0 && r > 0) || (p < 0 && r < 0)) return; + double t = -r / p; + t = std::sqrt (t); + sol.push_back(-t); + sol.push_back(t); + return; + } + + if (r == 0) + { + double t = -q/p; + sol.push_back(0); + sol.push_back(t); + return; + } + + + //std::cout << "p = " << p << ", q = " << q << ", r = " << r << std::endl; + double delta = q * q - 4 * p * r; + if (delta < 0) return; + if (delta == 0) + { + double t = -q / (2 * p); + sol.push_back(t); + return; + } + // else + double srd = std::sqrt(delta); + double t = - (q + sgn(q) * srd) / 2; + sol.push_back (t/p); + sol.push_back (r/t); + +} + +/* + * Return the inclination angle of the major axis of the conic section + */ +double xAx::axis_angle() const +{ + if (coeff(0) == 0 && coeff(1) == 0 && coeff(2) == 0) + { + Line l (coeff(3), coeff(4), coeff(5)); + return l.angle(); + } + if (coeff(1) == 0 && (coeff(0) == coeff(2))) return 0; + + double angle; + + int sgn_discr = det_sgn (get_matrix().main_minor_const_view()); + if (sgn_discr == 0) + { + //std::cout << "rotation_angle: sgn_discr = " + // << sgn_discr << std::endl; + angle = std::atan2 (-coeff(1), 2 * coeff(2)); + if (angle < 0) angle += 2*M_PI; + if (angle >= M_PI) angle -= M_PI; + + } + else + { + angle = std::atan2 (coeff(1), coeff(0) - coeff(2)); + if (angle < 0) angle += 2*M_PI; + angle -= M_PI; + if (angle < 0) angle += 2*M_PI; + angle /= 2; + if (angle >= M_PI) angle -= M_PI; + } + //std::cout << "rotation_angle : angle = " << angle << std::endl; + return angle; +} + +/* + * Translate the conic section by the given vector offset + * + * _offset: represent the vector offset + */ +xAx xAx::translate (const Point & _offset) const +{ + double B = coeff(1) / 2; + double D = coeff(3) / 2; + double E = coeff(4) / 2; + + Point T = - _offset; + + xAx cs; + cs.coeff(0) = coeff(0); + cs.coeff(1) = coeff(1); + cs.coeff(2) = coeff(2); + + Point DE; + DE[0] = coeff(0) * T[0] + B * T[1]; + DE[1] = B * T[0] + coeff(2) * T[1]; + + cs.coeff(3) = (DE[0] + D) * 2; + cs.coeff(4) = (DE[1] + E) * 2; + + cs.coeff(5) = dot (T, DE) + 2 * (T[0] * D + T[1] * E) + coeff(5); + + return cs; +} + + +/* + * Rotate the conic section by the given angle wrt the point (0,0) + * + * angle: represent the rotation angle + */ +xAx xAx::rotate (double angle) const +{ + double c = std::cos(-angle); + double s = std::sin(-angle); + double cc = c * c; + double ss = s * s; + double cs = c * s; + + xAx result; + result.coeff(5) = coeff(5); + + // quadratic terms + double Bcs = coeff(1) * cs; + + result.coeff(0) = coeff(0) * cc + Bcs + coeff(2) * ss; + result.coeff(2) = coeff(0) * ss - Bcs + coeff(2) * cc; + result.coeff(1) = coeff(1) * (cc - ss) + 2 * (coeff(2) - coeff(0)) * cs; + + // linear terms + result.coeff(3) = coeff(3) * c + coeff(4) * s; + result.coeff(4) = coeff(4) * c - coeff(3) * s; + + return result; +} + + +/* + * Decompose a degenerate conic in two lines the conic section is made by. + * Return true if the decomposition is successful, else if it fails. + * + * l1, l2: out parameters where the decomposed conic section is returned + */ +bool xAx::decompose (Line& l1, Line& l2) const +{ + NL::SymmetricMatrix<3> C = get_matrix(); + if (!is_quadratic() || !isDegenerate()) + { + return false; + } + NL::Matrix M(C); + NL::SymmetricMatrix<3> D = -adj(C); + + if (!D.is_zero()) // D == 0 <=> rank(C) < 2 + { + + //if (D.get<0,0>() < 0 || D.get<1,1>() < 0 || D.get<2,2>() < 0) + //{ + //std::cout << "C: \n" << C << std::endl; + //std::cout << "D: \n" << D << std::endl; + + /* + * This case should be impossible because any diagonal element + * of D is a square, but due to non exact aritmethic computation + * it can actually happen; however the algorithm seems to work + * correctly even if some diagonal term is negative, the only + * difference is that we should compute the absolute value of + * diagonal elements. So until we elaborate a better degenerate + * test it's better not rising exception when we have a negative + * diagonal element. + */ + //} + + NL::Vector d(3); + d[0] = std::fabs (D.get<0,0>()); + d[1] = std::fabs (D.get<1,1>()); + d[2] = std::fabs (D.get<2,2>()); + + size_t idx = d.max_index(); + if (d[idx] == 0) + { + THROW_LOGICALERROR ("xAx::decompose: " + "rank 2 but adjoint with null diagonal"); + } + d[0] = D(idx,0); d[1] = D(idx,1); d[2] = D(idx,2); + d.scale (1 / std::sqrt (std::fabs (D(idx,idx)))); + M(1,2) += d[0]; M(2,1) -= d[0]; + M(0,2) -= d[1]; M(2,0) += d[1]; + M(0,1) += d[2]; M(1,0) -= d[2]; + + //std::cout << "C: \n" << C << std::endl; + //std::cout << "D: \n" << D << std::endl; + //std::cout << "d = " << d << std::endl; + //std::cout << "M = " << M << std::endl; + } + + std::pair<size_t, size_t> max_ij = M.max_index(); + std::pair<size_t, size_t> min_ij = M.min_index(); + double abs_max = std::fabs (M(max_ij.first, max_ij.second)); + double abs_min = std::fabs (M(min_ij.first, min_ij.second)); + size_t i_max, j_max; + if (abs_max > abs_min) + { + i_max = max_ij.first; + j_max = max_ij.second; + } + else + { + i_max = min_ij.first; + j_max = min_ij.second; + } + l1.setCoefficients (M(i_max,0), M(i_max,1), M(i_max,2)); + l2.setCoefficients (M(0, j_max), M(1,j_max), M(2,j_max)); + + return true; +} + +std::array<Line, 2> xAx::decompose_df(Coord epsilon) const +{ + // For the classification of degenerate conics, see https://mathworld.wolfram.com/QuadraticCurve.html + using std::sqrt, std::abs; + + // Create 2 degenerate lines + auto const origin = Point(0, 0); + std::array<Line, 2> result = {Line(origin, origin), Line(origin, origin)}; + + double A = c[0]; + double B = c[1]; + double C = c[2]; + double D = c[3]; + double E = c[4]; + double F = c[5]; + Coord discriminant = sqr(B) - 4 * A * C; + if (discriminant < -epsilon) { + return result; + } + + bool single_line = false; // In the generic case, there will be 2 lines. + bool parallel_lines = false; + if (discriminant < epsilon) { + discriminant = 0; + parallel_lines = true; + // Check the secondary discriminant + Coord const secondary = sqr(D) + sqr(E) - 4 * F * (A + C); + if (secondary < -epsilon) { + return result; + } + single_line = (secondary < epsilon); + } + + if (abs(A) > epsilon || abs(C) > epsilon) { + // This is the typical case: either x² or y² come with a nonzero coefficient. + // To guard against numerical errors, we check which of the coefficients A, C has larger absolute value. + + bool const swap_xy = abs(C) > abs(A); + if (swap_xy) { + std::swap(A, C); + std::swap(D, E); + } + + // From now on, we may assume that A is "reasonably large". + if (parallel_lines) { + if (single_line) { + // Special case: a single line. + std::array<double, 3> coeffs = {sqrt(abs(A)), sqrt(abs(C)), sqrt(abs(F))}; + if (swap_xy) { + std::swap(coeffs[0], coeffs[1]); + } + rescale_homogenous(coeffs); + result[0].setCoefficients(coeffs[0], coeffs[1], coeffs[2]); + return result; + } + + // Two parallel lines. + Coord const quotient_discriminant = sqr(D) - 4 * A * F; + if (quotient_discriminant < 0) { + return result; + } + Coord const sqrt_disc = sqrt(quotient_discriminant); + double const c1 = 0.5 * (D - sqrt_disc); + double const c2 = c1 + sqrt_disc; + std::array<double, 3> coeffs = {A, 0.5 * B, c1}; + if (swap_xy) { + std::swap(coeffs[0], coeffs[1]); + } + rescale_homogenous(coeffs); + result[0].setCoefficients(coeffs[0], coeffs[1], coeffs[2]); + + coeffs = {A, 0.5 * B, c2}; + if (swap_xy) { + std::swap(coeffs[0], coeffs[1]); + } + rescale_homogenous(coeffs); + result[1].setCoefficients(coeffs[0], coeffs[1], coeffs[2]); + return result; + } + + // Now for the typical case of 2 non-parallel lines. + + // We know that A is further away from 0 than C is. + // The mathematical derivation of the solution is as follows: + // let Δ = B² - 4AC (the discriminant); we know Δ > 0. + // Write δ = sqrt(Δ); we know that this is also positive. + // Then the product AΔ is nonzero, so the equation + // Ax² + Bxy + Cy² + Dx + Ey + F = 0 + // is equivalent to + // AΔ (Ax² + Bxy + Cy² + Dx + Ey + F) = 0. + // Consider the two factors + // L_1 = Aδx + 0.5 (Bδ-Δ)y + EA - 0.5 D(B-δ) + // L_2 = Aδx + 0.5 (Bδ+Δ)y - EA + 0.5 D(B+δ) + // With a bit of algebra, you can show that L_1 * L_2 expands + // to AΔ (Ax² + Bxy + Cy² + Dx + Ey + F) (in order to get the + // correct value of F, you have to use the fact that the conic + // is degenerate). Therefore, the factors L_1 and L_2 are in + // fact equations of the two lines to be found. + Coord const delta = sqrt(discriminant); + std::array<double, 3> coeffs1 = {A * delta, 0.5 * (B * delta - discriminant), E * A - 0.5 * D * (B - delta)}; + std::array<double, 3> coeffs2 = {coeffs1[0], coeffs1[1] + discriminant, D * delta - coeffs1[2]}; + if (swap_xy) { // We must unswap the coefficients of x and y + std::swap(coeffs1[0], coeffs1[1]); + std::swap(coeffs2[0], coeffs2[1]); + } + + unsigned index = 0; + if (coeffs1[0] != 0 || coeffs1[1] != 0) { + rescale_homogenous(coeffs1); + result[index++].setCoefficients(coeffs1[0], coeffs1[1], coeffs1[2]); + } + if (coeffs2[0] != 0 || coeffs2[1] != 0) { + rescale_homogenous(coeffs2); + result[index].setCoefficients(coeffs2[0], coeffs2[1], coeffs2[2]); + } + return result; + } + + // If we're here, then A==0 and C==0. + if (abs(B) < epsilon) { // A == B == C == 0, so the conic reduces to Dx + Ey + F. + if (D == 0 && E == 0) { + return result; + } + std::array<double, 3> coeffs = {D, E, F}; + rescale_homogenous(coeffs); + result[0].setCoefficients(coeffs[0], coeffs[1], coeffs[2]); + return result; + } + + // OK, so A == C == 0 but B != 0. In other words, the conic has the form + // Bxy + Dx + Ey + F. Since B != 0, the zero set stays the same if we multiply the + // equation by B, which gives us this equation: + // B²xy + BDx + BEy + BF = 0. + // The above factors as (Bx + E)(By + D) = 0. + std::array<double, 2> nonzero_coeffs = {B, E}; + rescale_homogenous(nonzero_coeffs); + result[0].setCoefficients(nonzero_coeffs[0], 0, nonzero_coeffs[1]); + + nonzero_coeffs = {B, D}; + rescale_homogenous(nonzero_coeffs); + result[1].setCoefficients(0, nonzero_coeffs[0], nonzero_coeffs[1]); + return result; +} + +/* + * Return the rectangle that bound the conic section arc characterized by + * the passed points. + * + * P1: the initial point of the arc + * Q: the inner point of the arc + * P2: the final point of the arc + * + * prerequisite: the passed points must lie on the conic + */ +Rect xAx::arc_bound (const Point & P1, const Point & Q, const Point & P2) const +{ + using std::swap; + //std::cout << "BOUND: P1 = " << P1 << std::endl; + //std::cout << "BOUND: Q = " << Q << std::endl; + //std::cout << "BOUND: P2 = " << P2 << std::endl; + + Rect B(P1, P2); + double Qside = signed_triangle_area (P1, Q, P2); + //std::cout << "BOUND: Qside = " << Qside << std::endl; + + Line gl[2]; + bool empty[2] = {false, false}; + + try // if the passed coefficients lead to an equation 0x + 0y + c == 0, + { // with c != 0 the setCoefficients rise an exception + gl[0].setCoefficients (coeff(1), 2 * coeff(2), coeff(4)); + } + catch(Geom::LogicalError const &e) + { + empty[0] = true; + } + + try + { + gl[1].setCoefficients (2 * coeff(0), coeff(1), coeff(3)); + } + catch(Geom::LogicalError const &e) + { + empty[1] = true; + } + + std::vector<double> rts; + std::vector<Point> M; + for (size_t dim = 0; dim < 2; ++dim) + { + if (empty[dim]) continue; + rts = roots (gl[dim]); + M.clear(); + for (double rt : rts) + M.push_back (gl[dim].pointAt (rt)); + if (M.size() == 1) + { + double Mside = signed_triangle_area (P1, M[0], P2); + if (sgn(Mside) == sgn(Qside)) + { + //std::cout << "BOUND: M.size() == 1" << std::endl; + B[dim].expandTo(M[0][dim]); + } + } + else if (M.size() == 2) + { + //std::cout << "BOUND: M.size() == 2" << std::endl; + if (M[0][dim] > M[1][dim]) + swap (M[0], M[1]); + + if (M[0][dim] > B[dim].max()) + { + double Mside = signed_triangle_area (P1, M[0], P2); + if (sgn(Mside) == sgn(Qside)) + B[dim].setMax(M[0][dim]); + } + else if (M[1][dim] < B[dim].min()) + { + double Mside = signed_triangle_area (P1, M[1], P2); + if (sgn(Mside) == sgn(Qside)) + B[dim].setMin(M[1][dim]); + } + else + { + double Mside = signed_triangle_area (P1, M[0], P2); + if (sgn(Mside) == sgn(Qside)) + B[dim].setMin(M[0][dim]); + Mside = signed_triangle_area (P1, M[1], P2); + if (sgn(Mside) == sgn(Qside)) + B[dim].setMax(M[1][dim]); + } + } + } + + return B; +} + +/* + * Return all points on the conic section nearest to the passed point "P". + * + * P: the point to compute the nearest one + */ +std::vector<Point> xAx::allNearestTimes (const Point &P) const +{ + // TODO: manage the circle - centre case + std::vector<Point> points; + + // named C the conic we look for points (x,y) on C such that + // dot (grad (C(x,y)), rot90 (P -(x,y))) == 0; the set of points satisfying + // this equation is still a conic G, so the wanted points can be found by + // intersecting C with G + xAx G (-coeff(1), + 2 * (coeff(0) - coeff(2)), + coeff(1), + -coeff(4) + coeff(1) * P[X] - 2 * coeff(0) * P[Y], + coeff(3) - coeff(1) * P[Y] + 2 * coeff(2) * P[X], + -coeff(3) * P[Y] + coeff(4) * P[X]); + + std::vector<Point> crs = intersect (*this, G); + + //std::cout << "NEAREST POINT: crs.size = " << crs.size() << std::endl; + if (crs.empty()) return points; + + size_t idx = 0; + double mindist = distanceSq (crs[0], P); + std::vector<double> dist; + dist.push_back (mindist); + + for (size_t i = 1; i < crs.size(); ++i) + { + dist.push_back (distanceSq (crs[i], P)); + if (mindist > dist.back()) + { + idx = i; + mindist = dist.back(); + } + } + + points.push_back (crs[idx]); + for (size_t i = 0; i < crs.size(); ++i) + { + if (i == idx) continue; + if (dist[i] == mindist) + points.push_back (crs[i]); + } + + return points; +} + + + +bool clip (std::vector<RatQuad> & rq, const xAx & cs, const Rect & R) +{ + clipper aclipper (cs, R); + return aclipper.clip (rq); +} + + +} // end namespace Geom + + + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |