summaryrefslogtreecommitdiffstats
path: root/src/2geom/d2-sbasis.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/2geom/d2-sbasis.cpp364
1 files changed, 364 insertions, 0 deletions
diff --git a/src/2geom/d2-sbasis.cpp b/src/2geom/d2-sbasis.cpp
new file mode 100644
index 0000000..4e95f6f
--- /dev/null
+++ b/src/2geom/d2-sbasis.cpp
@@ -0,0 +1,364 @@
+/**
+ * \file
+ * \brief Some two-dimensional SBasis operations
+ *//*
+ * Authors:
+ * MenTaLguy <mental@rydia.net>
+ * Jean-François Barraud <jf.barraud@gmail.com>
+ * Johan Engelen <j.b.c.engelen@alumnus.utwente.nl>
+ *
+ * Copyright 2007-2012 Authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, output to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ *
+ */
+
+#include <2geom/d2.h>
+#include <2geom/piecewise.h>
+
+namespace Geom {
+
+SBasis L2(D2<SBasis> const & a, unsigned k) { return sqrt(dot(a, a), k); }
+
+D2<SBasis> multiply(Linear const & a, D2<SBasis> const & b) {
+ return D2<SBasis>(multiply(a, b[X]), multiply(a, b[Y]));
+}
+
+D2<SBasis> multiply(SBasis const & a, D2<SBasis> const & b) {
+ return D2<SBasis>(multiply(a, b[X]), multiply(a, b[Y]));
+}
+
+D2<SBasis> truncate(D2<SBasis> const & a, unsigned terms) {
+ return D2<SBasis>(truncate(a[X], terms), truncate(a[Y], terms));
+}
+
+unsigned sbasis_size(D2<SBasis> const & a) {
+ return std::max((unsigned) a[0].size(), (unsigned) a[1].size());
+}
+
+//TODO: Is this sensical? shouldn't it be like pythagorean or something?
+double tail_error(D2<SBasis> const & a, unsigned tail) {
+ return std::max(a[0].tailError(tail), a[1].tailError(tail));
+}
+
+Piecewise<D2<SBasis> > sectionize(D2<Piecewise<SBasis> > const &a) {
+ Piecewise<SBasis> x = partition(a[0], a[1].cuts), y = partition(a[1], a[0].cuts);
+ assert(x.size() == y.size());
+ Piecewise<D2<SBasis> > ret;
+ for(unsigned i = 0; i < x.size(); i++)
+ ret.push_seg(D2<SBasis>(x[i], y[i]));
+ ret.cuts.insert(ret.cuts.end(), x.cuts.begin(), x.cuts.end());
+ return ret;
+}
+
+D2<Piecewise<SBasis> > make_cuts_independent(Piecewise<D2<SBasis> > const &a) {
+ D2<Piecewise<SBasis> > ret;
+ for(unsigned d = 0; d < 2; d++) {
+ for(unsigned i = 0; i < a.size(); i++)
+ ret[d].push_seg(a[i][d]);
+ ret[d].cuts.insert(ret[d].cuts.end(), a.cuts.begin(), a.cuts.end());
+ }
+ return ret;
+}
+
+Piecewise<D2<SBasis> > rot90(Piecewise<D2<SBasis> > const &M){
+ Piecewise<D2<SBasis> > result;
+ if (M.empty()) return M;
+ result.push_cut(M.cuts[0]);
+ for (unsigned i=0; i<M.size(); i++){
+ result.push(rot90(M[i]),M.cuts[i+1]);
+ }
+ return result;
+}
+
+/** @brief Calculates the 'dot product' or 'inner product' of \c a and \c b
+ * @return \f[
+ * f(t) \rightarrow \left\{
+ * \begin{array}{c}
+ * a_1 \bullet b_1 \\
+ * a_2 \bullet b_2 \\
+ * \ldots \\
+ * a_n \bullet b_n \\
+ * \end{array}\right.
+ * \f]
+ * @relates Piecewise */
+Piecewise<SBasis> dot(Piecewise<D2<SBasis> > const &a, Piecewise<D2<SBasis> > const &b)
+{
+ Piecewise<SBasis > result;
+ if (a.empty() || b.empty()) return result;
+ Piecewise<D2<SBasis> > aa = partition(a,b.cuts);
+ Piecewise<D2<SBasis> > bb = partition(b,a.cuts);
+
+ result.push_cut(aa.cuts.front());
+ for (unsigned i=0; i<aa.size(); i++){
+ result.push(dot(aa.segs[i],bb.segs[i]),aa.cuts[i+1]);
+ }
+ return result;
+}
+
+/** @brief Calculates the 'dot product' or 'inner product' of \c a and \c b
+ * @return \f[
+ * f(t) \rightarrow \left\{
+ * \begin{array}{c}
+ * a_1 \bullet b \\
+ * a_2 \bullet b \\
+ * \ldots \\
+ * a_n \bullet b \\
+ * \end{array}\right.
+ * \f]
+ * @relates Piecewise */
+Piecewise<SBasis> dot(Piecewise<D2<SBasis> > const &a, Point const &b)
+{
+ Piecewise<SBasis > result;
+ if (a.empty()) return result;
+
+ result.push_cut(a.cuts.front());
+ for (unsigned i = 0; i < a.size(); ++i){
+ result.push(dot(a.segs[i],b), a.cuts[i+1]);
+ }
+ return result;
+}
+
+
+Piecewise<SBasis> cross(Piecewise<D2<SBasis> > const &a,
+ Piecewise<D2<SBasis> > const &b){
+ Piecewise<SBasis > result;
+ if (a.empty() || b.empty()) return result;
+ Piecewise<D2<SBasis> > aa = partition(a,b.cuts);
+ Piecewise<D2<SBasis> > bb = partition(b,a.cuts);
+
+ result.push_cut(aa.cuts.front());
+ for (unsigned i=0; i<a.size(); i++){
+ result.push(cross(aa.segs[i],bb.segs[i]),aa.cuts[i+1]);
+ }
+ return result;
+}
+
+Piecewise<D2<SBasis> > operator*(Piecewise<D2<SBasis> > const &a, Affine const &m) {
+ Piecewise<D2<SBasis> > result;
+ if(a.empty()) return result;
+ result.push_cut(a.cuts[0]);
+ for (unsigned i = 0; i < a.size(); i++) {
+ result.push(a[i] * m, a.cuts[i+1]);
+ }
+ return result;
+}
+
+//if tol>0, only force continuity where the jump is smaller than tol.
+Piecewise<D2<SBasis> > force_continuity(Piecewise<D2<SBasis> > const &f, double tol, bool closed)
+{
+ if (f.size()==0) return f;
+ Piecewise<D2<SBasis> > result=f;
+ unsigned cur = (closed)? 0:1;
+ unsigned prev = (closed)? f.size()-1:0;
+ while(cur<f.size()){
+ Point pt0 = f.segs[prev].at1();
+ Point pt1 = f.segs[cur ].at0();
+ if (tol<=0 || L2sq(pt0-pt1)<tol*tol){
+ pt0 = (pt0+pt1)/2;
+ for (unsigned dim=0; dim<2; dim++){
+ SBasis &prev_sb=result.segs[prev][dim];
+ SBasis &cur_sb =result.segs[cur][dim];
+ Coord const c=pt0[dim];
+ if (prev_sb.isZero(0)) {
+ prev_sb = SBasis(Linear(0.0, c));
+ } else {
+ prev_sb[0][1] = c;
+ }
+ if (cur_sb.isZero(0)) {
+ cur_sb = SBasis(Linear(c, 0.0));
+ } else {
+ cur_sb[0][0] = c;
+ }
+ }
+ }
+ prev = cur++;
+ }
+ return result;
+}
+
+std::vector<Geom::Piecewise<Geom::D2<Geom::SBasis> > >
+split_at_discontinuities (Geom::Piecewise<Geom::D2<Geom::SBasis> > const & pwsbin, double tol)
+{
+ using namespace Geom;
+ std::vector<Piecewise<D2<SBasis> > > ret;
+ unsigned piece_start = 0;
+ for (unsigned i=0; i<pwsbin.segs.size(); i++){
+ if (i==(pwsbin.segs.size()-1) || L2(pwsbin.segs[i].at1()- pwsbin.segs[i+1].at0()) > tol){
+ Piecewise<D2<SBasis> > piece;
+ piece.cuts.push_back(pwsbin.cuts[piece_start]);
+ for (unsigned j = piece_start; j<i+1; j++){
+ piece.segs.push_back(pwsbin.segs[j]);
+ piece.cuts.push_back(pwsbin.cuts[j+1]);
+ }
+ ret.push_back(piece);
+ piece_start = i+1;
+ }
+ }
+ return ret;
+}
+
+Point unitTangentAt(D2<SBasis> const & a, Coord t, unsigned n)
+{
+ std::vector<Point> derivs = a.valueAndDerivatives(t, n);
+ for (unsigned deriv_n = 1; deriv_n < derivs.size(); deriv_n++) {
+ Coord length = derivs[deriv_n].length();
+ if ( ! are_near(length, 0) ) {
+ // length of derivative is non-zero, so return unit vector
+ return derivs[deriv_n] / length;
+ }
+ }
+ return Point (0,0);
+}
+
+static void set_first_point(Piecewise<D2<SBasis> > &f, Point const &a){
+ if ( f.empty() ){
+ f.concat(Piecewise<D2<SBasis> >(D2<SBasis>(SBasis(Linear(a[X])), SBasis(Linear(a[Y])))));
+ return;
+ }
+ for (unsigned dim=0; dim<2; dim++){
+ f.segs.front()[dim][0][0] = a[dim];
+ }
+}
+static void set_last_point(Piecewise<D2<SBasis> > &f, Point const &a){
+ if ( f.empty() ){
+ f.concat(Piecewise<D2<SBasis> >(D2<SBasis>(SBasis(Linear(a[X])), SBasis(Linear(a[Y])))));
+ return;
+ }
+ for (unsigned dim=0; dim<2; dim++){
+ f.segs.back()[dim][0][1] = a[dim];
+ }
+}
+
+std::vector<Piecewise<D2<SBasis> > > fuse_nearby_ends(std::vector<Piecewise<D2<SBasis> > > const &f, double tol){
+
+ if ( f.empty()) return f;
+ std::vector<Piecewise<D2<SBasis> > > result;
+ std::vector<std::vector<unsigned> > pre_result;
+ for (unsigned i=0; i<f.size(); i++){
+ bool inserted = false;
+ Point a = f[i].firstValue();
+ Point b = f[i].lastValue();
+ for (auto & j : pre_result){
+ Point aj = f.at(j.back()).lastValue();
+ Point bj = f.at(j.front()).firstValue();
+ if ( L2(a-aj) < tol ) {
+ j.push_back(i);
+ inserted = true;
+ break;
+ }
+ if ( L2(b-bj) < tol ) {
+ j.insert(j.begin(),i);
+ inserted = true;
+ break;
+ }
+ }
+ if (!inserted) {
+ pre_result.emplace_back();
+ pre_result.back().push_back(i);
+ }
+ }
+ for (auto & i : pre_result){
+ Piecewise<D2<SBasis> > comp;
+ for (unsigned j=0; j<i.size(); j++){
+ Piecewise<D2<SBasis> > new_comp = f.at(i[j]);
+ if ( j>0 ){
+ set_first_point( new_comp, comp.segs.back().at1() );
+ }
+ comp.concat(new_comp);
+ }
+ if ( L2(comp.firstValue()-comp.lastValue()) < tol ){
+ //TODO: check sizes!!!
+ set_last_point( comp, comp.segs.front().at0() );
+ }
+ result.push_back(comp);
+ }
+ return result;
+}
+
+/*
+ * Computes the intersection of two sets given as (ordered) union of intervals.
+ */
+static std::vector<Interval> intersect( std::vector<Interval> const &a, std::vector<Interval> const &b){
+ std::vector<Interval> result;
+ //TODO: use order!
+ for (auto i : a){
+ for (auto j : b){
+ OptInterval c( i );
+ c &= j;
+ if ( c ) {
+ result.push_back( *c );
+ }
+ }
+ }
+ return result;
+}
+
+std::vector<Interval> level_set( D2<SBasis> const &f, Rect region){
+ std::vector<Rect> regions( 1, region );
+ return level_sets( f, regions ).front();
+}
+std::vector<Interval> level_set( D2<SBasis> const &f, Point p, double tol){
+ Rect region(p, p);
+ region.expandBy( tol );
+ return level_set( f, region );
+}
+std::vector<std::vector<Interval> > level_sets( D2<SBasis> const &f, std::vector<Rect> regions){
+ std::vector<Interval> regsX (regions.size(), Interval() );
+ std::vector<Interval> regsY (regions.size(), Interval() );
+ for ( unsigned i=0; i < regions.size(); i++ ){
+ regsX[i] = regions[i][X];
+ regsY[i] = regions[i][Y];
+ }
+ std::vector<std::vector<Interval> > x_in_regs = level_sets( f[X], regsX );
+ std::vector<std::vector<Interval> > y_in_regs = level_sets( f[Y], regsY );
+ std::vector<std::vector<Interval> >result(regions.size(), std::vector<Interval>() );
+ for (unsigned i=0; i<regions.size(); i++){
+ result[i] = intersect ( x_in_regs[i], y_in_regs[i] );
+ }
+ return result;
+}
+std::vector<std::vector<Interval> > level_sets( D2<SBasis> const &f, std::vector<Point> pts, double tol){
+ std::vector<Rect> regions( pts.size(), Rect() );
+ for (unsigned i=0; i<pts.size(); i++){
+ regions[i] = Rect( pts[i], pts[i] );
+ regions[i].expandBy( tol );
+ }
+ return level_sets( f, regions );
+}
+
+
+} // namespace Geom
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :