diff options
Diffstat (limited to '')
-rw-r--r-- | src/2geom/ellipse.cpp | 790 |
1 files changed, 790 insertions, 0 deletions
diff --git a/src/2geom/ellipse.cpp b/src/2geom/ellipse.cpp new file mode 100644 index 0000000..42cb36d --- /dev/null +++ b/src/2geom/ellipse.cpp @@ -0,0 +1,790 @@ +/** @file + * @brief Ellipse shape + *//* + * Authors: + * Marco Cecchetti <mrcekets at gmail.com> + * Krzysztof Kosiński <tweenk.pl@gmail.com> + * + * Copyright 2008-2014 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include <2geom/conicsec.h> +#include <2geom/ellipse.h> +#include <2geom/elliptical-arc.h> +#include <2geom/numeric/fitting-tool.h> +#include <2geom/numeric/fitting-model.h> + +namespace Geom { + +Ellipse::Ellipse(Geom::Circle const &c) + : _center(c.center()) + , _rays(c.radius(), c.radius()) + , _angle(0) +{} + +void Ellipse::setCoefficients(double A, double B, double C, double D, double E, double F) +{ + double den = 4*A*C - B*B; + if (den == 0) { + THROW_RANGEERROR("den == 0, while computing ellipse centre"); + } + _center[X] = (B*E - 2*C*D) / den; + _center[Y] = (B*D - 2*A*E) / den; + + // evaluate the a coefficient of the ellipse equation in normal form + // E(x,y) = a*(x-cx)^2 + b*(x-cx)*(y-cy) + c*(y-cy)^2 = 1 + // where b = a*B , c = a*C, (cx,cy) == centre + double num = A * sqr(_center[X]) + + B * _center[X] * _center[Y] + + C * sqr(_center[Y]) + - F; + + + //evaluate ellipse rotation angle + _angle = std::atan2( -B, -(A - C) )/2; + + // evaluate the length of the ellipse rays + double sinrot, cosrot; + sincos(_angle, sinrot, cosrot); + double cos2 = cosrot * cosrot; + double sin2 = sinrot * sinrot; + double cossin = cosrot * sinrot; + + den = A * cos2 + B * cossin + C * sin2; + if (den == 0) { + THROW_RANGEERROR("den == 0, while computing 'rx' coefficient"); + } + double rx2 = num / den; + if (rx2 < 0) { + THROW_RANGEERROR("rx2 < 0, while computing 'rx' coefficient"); + } + _rays[X] = std::sqrt(rx2); + + den = C * cos2 - B * cossin + A * sin2; + if (den == 0) { + THROW_RANGEERROR("den == 0, while computing 'ry' coefficient"); + } + double ry2 = num / den; + if (ry2 < 0) { + THROW_RANGEERROR("ry2 < 0, while computing 'rx' coefficient"); + } + _rays[Y] = std::sqrt(ry2); + + // the solution is not unique so we choose always the ellipse + // with a rotation angle between 0 and PI/2 + makeCanonical(); +} + +Point Ellipse::initialPoint() const +{ + Coord sinrot, cosrot; + sincos(_angle, sinrot, cosrot); + Point p(ray(X) * cosrot + center(X), ray(X) * sinrot + center(Y)); + return p; +} + + +Affine Ellipse::unitCircleTransform() const +{ + Affine ret = Scale(ray(X), ray(Y)) * Rotate(_angle); + ret.setTranslation(center()); + return ret; +} + +Affine Ellipse::inverseUnitCircleTransform() const +{ + if (ray(X) == 0 || ray(Y) == 0) { + THROW_RANGEERROR("a degenerate ellipse doesn't have an inverse unit circle transform"); + } + Affine ret = Translate(-center()) * Rotate(-_angle) * Scale(1/ray(X), 1/ray(Y)); + return ret; +} + + +LineSegment Ellipse::axis(Dim2 d) const +{ + Point a(0, 0), b(0, 0); + a[d] = -1; + b[d] = 1; + LineSegment ls(a, b); + ls.transform(unitCircleTransform()); + return ls; +} + +LineSegment Ellipse::semiaxis(Dim2 d, int sign) const +{ + Point a(0, 0), b(0, 0); + b[d] = sgn(sign); + LineSegment ls(a, b); + ls.transform(unitCircleTransform()); + return ls; +} + +Rect Ellipse::boundsExact() const +{ + auto const trans = unitCircleTransform(); + + auto proj_bounds = [&] (Dim2 d) { + // The dth coordinate function pulls back to trans[d] * x + trans[d + 2] * y + trans[d + 4] + // in the coordinate system where the ellipse is a unit circle. We compute its range of + // values on the unit circle. + auto const r = std::hypot(trans[d], trans[d + 2]); + auto const mid = trans[d + 4]; + return Interval(mid - r, mid + r); + }; + + return { proj_bounds(X), proj_bounds(Y) }; +} + +Rect Ellipse::boundsFast() const +{ + // Every ellipse is contained in the circle with the same center and radius + // equal to the larger of the two rays. We return the bounding square + // of this circle (this is really fast but only exact for circles). + auto const larger_ray = (ray(X) > ray(Y) ? ray(X) : ray(Y)); + assert(larger_ray >= 0.0); + auto const rr = Point(larger_ray, larger_ray); + return Rect(_center - rr, _center + rr); +} + +std::vector<double> Ellipse::coefficients() const +{ + std::vector<double> c(6); + coefficients(c[0], c[1], c[2], c[3], c[4], c[5]); + return c; +} + +void Ellipse::coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const +{ + if (ray(X) == 0 || ray(Y) == 0) { + THROW_RANGEERROR("a degenerate ellipse doesn't have an implicit form"); + } + + double cosrot, sinrot; + sincos(_angle, sinrot, cosrot); + double cos2 = cosrot * cosrot; + double sin2 = sinrot * sinrot; + double cossin = cosrot * sinrot; + double invrx2 = 1 / (ray(X) * ray(X)); + double invry2 = 1 / (ray(Y) * ray(Y)); + + A = invrx2 * cos2 + invry2 * sin2; + B = 2 * (invrx2 - invry2) * cossin; + C = invrx2 * sin2 + invry2 * cos2; + D = -2 * A * center(X) - B * center(Y); + E = -2 * C * center(Y) - B * center(X); + F = A * center(X) * center(X) + + B * center(X) * center(Y) + + C * center(Y) * center(Y) + - 1; +} + + +void Ellipse::fit(std::vector<Point> const &points) +{ + size_t sz = points.size(); + if (sz < 5) { + THROW_RANGEERROR("fitting error: too few points passed"); + } + NL::LFMEllipse model; + NL::least_squeares_fitter<NL::LFMEllipse> fitter(model, sz); + + for (size_t i = 0; i < sz; ++i) { + fitter.append(points[i]); + } + fitter.update(); + + NL::Vector z(sz, 0.0); + model.instance(*this, fitter.result(z)); +} + + +EllipticalArc * +Ellipse::arc(Point const &ip, Point const &inner, Point const &fp) +{ + // This is resistant to degenerate ellipses: + // both flags evaluate to false in that case. + + bool large_arc_flag = false; + bool sweep_flag = false; + + // Determination of large arc flag: + // large_arc is false when the inner point is on the same side + // of the center---initial point line as the final point, AND + // is on the same side of the center---final point line as the + // initial point. + // Additionally, large_arc is always false when we have exactly + // 1/2 of an arc, i.e. the cross product of the center -> initial point + // and center -> final point vectors is zero. + // Negating the above leads to the condition for large_arc being true. + Point fv = fp - _center; + Point iv = ip - _center; + Point innerv = inner - _center; + double ifcp = cross(fv, iv); + + if (ifcp != 0 && (sgn(cross(fv, innerv)) != sgn(ifcp) || + sgn(cross(iv, innerv)) != sgn(-ifcp))) + { + large_arc_flag = true; + } + + // Determination of sweep flag: + // For clarity, let's assume that Y grows up. Then the cross product + // is positive for points on the left side of a vector and negative + // on the right side of a vector. + // + // cross(?, v) > 0 + // o-------------------> + // cross(?, v) < 0 + // + // If the arc is small (large_arc_flag is false) and the final point + // is on the right side of the vector initial point -> center, + // we have to go in the direction of increasing angles + // (counter-clockwise) and the sweep flag is true. + // If the arc is large, the opposite is true, since we have to reach + // the final point going the long way - in the other direction. + // We can express this observation as: + // cross(_center - ip, fp - _center) < 0 xor large_arc flag + // This is equal to: + // cross(-iv, fv) < 0 xor large_arc flag + // But cross(-iv, fv) is equal to cross(fv, iv) due to antisymmetry + // of the cross product, so we end up with the condition below. + if ((ifcp < 0) ^ large_arc_flag) { + sweep_flag = true; + } + + EllipticalArc *ret_arc = new EllipticalArc(ip, ray(X), ray(Y), rotationAngle(), + large_arc_flag, sweep_flag, fp); + return ret_arc; +} + +Ellipse &Ellipse::operator*=(Rotate const &r) +{ + _angle += r.angle(); + _center *= r; + return *this; +} + +Ellipse &Ellipse::operator*=(Affine const& m) +{ + Affine a = Scale(ray(X), ray(Y)) * Rotate(_angle); + Affine mwot = m.withoutTranslation(); + Affine am = a * mwot; + Point new_center = _center * m; + + if (are_near(am.descrim(), 0)) { + double angle; + if (am[0] != 0) { + angle = std::atan2(am[2], am[0]); + } else if (am[1] != 0) { + angle = std::atan2(am[3], am[1]); + } else { + angle = M_PI/2; + } + Point v = Point::polar(angle) * am; + _center = new_center; + _rays[X] = L2(v); + _rays[Y] = 0; + _angle = atan2(v); + return *this; + } else if (mwot.isScale(0) && _angle.radians() == 0) { + _rays[X] *= std::abs(mwot[0]); + _rays[Y] *= std::abs(mwot[3]); + _center = new_center; + return *this; + } + + std::vector<double> coeff = coefficients(); + Affine q( coeff[0], coeff[1]/2, + coeff[1]/2, coeff[2], + 0, 0 ); + + Affine invm = mwot.inverse(); + q = invm * q ; + std::swap(invm[1], invm[2]); + q *= invm; + setCoefficients(q[0], 2*q[1], q[3], 0, 0, -1); + _center = new_center; + + return *this; +} + +Ellipse Ellipse::canonicalForm() const +{ + Ellipse result(*this); + result.makeCanonical(); + return result; +} + +void Ellipse::makeCanonical() +{ + if (_rays[X] == _rays[Y]) { + _angle = 0; + return; + } + + if (_angle < 0) { + _angle += M_PI; + } + if (_angle >= M_PI/2) { + std::swap(_rays[X], _rays[Y]); + _angle -= M_PI/2; + } +} + +Point Ellipse::pointAt(Coord t) const +{ + Point p = Point::polar(t); + p *= unitCircleTransform(); + return p; +} + +Coord Ellipse::valueAt(Coord t, Dim2 d) const +{ + Coord sinrot, cosrot, cost, sint; + sincos(rotationAngle(), sinrot, cosrot); + sincos(t, sint, cost); + + if ( d == X ) { + return ray(X) * cosrot * cost + - ray(Y) * sinrot * sint + + center(X); + } else { + return ray(X) * sinrot * cost + + ray(Y) * cosrot * sint + + center(Y); + } +} + +Coord Ellipse::timeAt(Point const &p) const +{ + // degenerate ellipse is basically a reparametrized line segment + if (ray(X) == 0 || ray(Y) == 0) { + if (ray(X) != 0) { + return asin(Line(axis(X)).timeAt(p)); + } else if (ray(Y) != 0) { + return acos(Line(axis(Y)).timeAt(p)); + } else { + return 0; + } + } + Affine iuct = inverseUnitCircleTransform(); + return Angle(atan2(p * iuct)).radians0(); // return a value in [0, 2pi) +} + +Point Ellipse::unitTangentAt(Coord t) const +{ + Point p = Point::polar(t + M_PI/2); + p *= unitCircleTransform().withoutTranslation(); + p.normalize(); + return p; +} + +bool Ellipse::contains(Point const &p) const +{ + Point tp = p * inverseUnitCircleTransform(); + return tp.length() <= 1; +} + +/** @brief Convert curve time on the major axis to the corresponding angle + * parameters on a degenerate ellipse collapsed onto that axis. + * @param t The curve time on the major axis of an ellipse. + * @param vertical If true, the major axis goes from angle -π/2 to +π/2; + * otherwise, the major axis connects angles π and 0. + * @return The two angles at which the collapsed ellipse passes through the + * major axis point corresponding to the given time \f$t \in [0, 1]\f$. + */ +static std::array<Coord, 2> axis_time_to_angles(Coord t, bool vertical) +{ + Coord const to_unit = std::clamp(2.0 * t - 1.0, -1.0, 1.0); + if (vertical) { + double const arcsin = std::asin(to_unit); + return {arcsin, M_PI - arcsin}; + } else { + double const arccos = std::acos(to_unit); + return {arccos, -arccos}; + } +} + +/** @brief For each intersection of some shape with the major axis of an ellipse, produce one or two + * intersections of a degenerate ellipse (collapsed onto that axis) with the same shape. + * + * @param axis_intersections The intersections of some shape with the major axis. + * @param vertical Whether this is the vertical major axis (in the ellipse's natural coordinates). + * @return A vector with doubled intersections (corresponding to the two passages of the squashed + * ellipse through that point) and swapped order of the intersected shapes. +*/ +static std::vector<ShapeIntersection> double_axis_intersections(std::vector<ShapeIntersection> &&axis_intersections, + bool vertical) +{ + if (axis_intersections.empty()) { + return {}; + } + std::vector<ShapeIntersection> result; + result.reserve(2 * axis_intersections.size()); + + for (auto const &x : axis_intersections) { + for (auto a : axis_time_to_angles(x.second, vertical)) { + result.emplace_back(a, x.first, x.point()); // Swap first <-> converted second. + if (x.second == 0.0 || x.second == 1.0) { + break; // Do not double up endpoint intersections. + } + } + } + return result; +} + +std::vector<ShapeIntersection> Ellipse::intersect(Line const &line) const +{ + std::vector<ShapeIntersection> result; + + if (line.isDegenerate()) { + return result; + } + if (ray(X) == 0 || ray(Y) == 0) { + return double_axis_intersections(line.intersect(majorAxis()), ray(X) == 0); + } + + // Ax^2 + Bxy + Cy^2 + Dx + Ey + F + std::array<Coord, 6> coeffs; + coefficients(coeffs[0], coeffs[1], coeffs[2], coeffs[3], coeffs[4], coeffs[5]); + rescale_homogenous(coeffs); + auto [A, B, C, D, E, F] = coeffs; + Affine iuct = inverseUnitCircleTransform(); + + // generic case + std::array<Coord, 3> line_coeffs; + line.coefficients(line_coeffs[0], line_coeffs[1], line_coeffs[2]); + rescale_homogenous(line_coeffs); + auto [a, b, c] = line_coeffs; + Point lv = line.vector(); + + if (fabs(lv[X]) > fabs(lv[Y])) { + // y = -a/b x - c/b + Coord q = -a/b; + Coord r = -c/b; + + // substitute that into the ellipse equation, making it quadratic in x + Coord I = A + B*q + C*q*q; // x^2 terms + Coord J = B*r + C*2*q*r + D + E*q; // x^1 terms + Coord K = C*r*r + E*r + F; // x^0 terms + std::vector<Coord> xs = solve_quadratic(I, J, K); + + for (double x : xs) { + Point p(x, q*x + r); + result.emplace_back(atan2(p * iuct), line.timeAt(p), p); + } + } else { + Coord q = -b/a; + Coord r = -c/a; + + Coord I = A*q*q + B*q + C; + Coord J = A*2*q*r + B*r + D*q + E; + Coord K = A*r*r + D*r + F; + std::vector<Coord> xs = solve_quadratic(I, J, K); + + for (double x : xs) { + Point p(q*x + r, x); + result.emplace_back(atan2(p * iuct), line.timeAt(p), p); + } + } + return result; +} + +std::vector<ShapeIntersection> Ellipse::intersect(LineSegment const &seg) const +{ + if (!boundsFast().intersects(seg.boundsFast())) { + return {}; + } + + // We simply reuse the procedure for lines and filter out + // results where the line time value is outside of the unit interval, + // but we apply a small tolerance to account for numerical errors. + double const param_prec = EPSILON / seg.length(0.0); + // TODO: accept a precision setting instead of always using EPSILON + // (requires an ABI break). + + auto xings = intersect(Line(seg)); + if (xings.empty()) { + return xings; + } + decltype(xings) result; + result.reserve(xings.size()); + + for (auto const &x : xings) { + if (x.second < -param_prec || x.second > 1.0 + param_prec) { + continue; + } + result.emplace_back(x.first, std::clamp(x.second, 0.0, 1.0), x.point()); + } + return result; +} + +std::vector<ShapeIntersection> Ellipse::intersect(Ellipse const &other) const +{ + // Handle degenerate cases first. + if (ray(X) == 0 || ray(Y) == 0) { // Degenerate ellipse, collapsed to the major axis. + return double_axis_intersections(other.intersect(majorAxis()), ray(X) == 0); + } + if (*this == other) { // Two identical ellipses. + THROW_INFINITELY_MANY_SOLUTIONS("The two ellipses are identical."); + } + if (!boundsFast().intersects(other.boundsFast())) { + return {}; + } + + // Find coefficients of the implicit equations of the two ellipses and rescale + // them (losslessly) for better numerical conditioning. + std::array<double, 6> coeffs; + coefficients(coeffs[0], coeffs[1], coeffs[2], coeffs[3], coeffs[4], coeffs[5]); + rescale_homogenous(coeffs); + auto [A, B, C, D, E, F] = coeffs; + + std::array<double, 6> otheffs; + other.coefficients(otheffs[0], otheffs[1], otheffs[2], otheffs[3], otheffs[4], otheffs[5]); + rescale_homogenous(otheffs); + auto [a, b, c, d, e, f] = otheffs; + + // Assume that Q(x, y) = 0 is the ellipse equation given by uppercase letters + // and R(x, y) = 0 is the equation given by lowercase ones. + // In other words, Q is the quadratic function describing this ellipse and + // R is the quadratic function for the other ellipse. + // + // A point (x, y) is common to both ellipses if and only if it solves the system + // { Q(x, y) = 0, + // { R(x, y) = 0. + // + // If µ is any real number, we can multiply the first equation by µ and add that + // to the first equation, obtaining the new system of equations: + // { Q(x, y) = 0, + // { µQ(x, y) + R(x, y) = 0. + // + // The first equation still says that (x, y) is a point on this ellipse, but the + // second equation uses the new expression (µQ + R) instead of the original R. + // + // Why do we do this? The reason is that the set of functions {µQ + R : µ real} + // is a "real system of conics" and there's a theorem which guarantees that such a system + // always contains a "degenerate conic" [proof below]. + // In practice, the degenerate conic will describe a line or a pair of lines, and intersecting + // a line with an ellipse is much easier than intersecting two ellipses directly. + // + // But in order to be able to do this, we must find a value of µ for which µQ + R is degenerate. + // We can write the expression (µQ + R)(x, y) in the following way: + // + // | aa bb/2 dd/2 | |x| + // (µQ + R)(x, y) = [x y 1] | bb/2 cc ee/2 | |y| + // | dd/2 ee/2 ff | |1| + // + // where aa = µA + a and so on. The determinant can be explicitly written out, + // giving an equation which is cubic in µ and can be solved analytically. + // The conic µQ + R is degenerate if and only if this determinant is 0. + // + // Proof that there's always a degenerate conic: a cubic real polynomial always has a root, + // and if the polynomial in µ isn't cubic (coefficient of µ^3 is zero), then the starting + // conic is already degenerate. + + Coord I, J, K, L; // Coefficients of µ in the expression for the determinant. + I = (-B*B*F + 4*A*C*F + D*E*B - A*E*E - C*D*D) / 4; + J = -((B*B - 4*A*C) * f + (2*B*F - D*E) * b + (2*A*E - D*B) * e + + (2*C*D - E*B) * d + (D*D - 4*A*F) * c + (E*E - 4*C*F) * a) / 4; + K = -((b*b - 4*a*c) * F + (2*b*f - d*e) * B + (2*a*e - d*b) * E + + (2*c*d - e*b) * D + (d*d - 4*a*f) * C + (e*e - 4*c*f) * A) / 4; + L = (-b*b*f + 4*a*c*f + d*e*b - a*e*e - c*d*d) / 4; + + std::vector<Coord> mus = solve_cubic(I, J, K, L); + Coord mu = infinity(); + + // Now that we have solved for µ, we need to check whether the conic + // determined by µQ + R is reducible to a product of two lines. If it's not, + // it means that there are no intersections. If it is, the intersections of these + // lines with the original ellipses (if there are any) give the coordinates + // of intersections. + + // Prefer middle root if there are three. + // Out of three possible pairs of lines that go through four points of intersection + // of two ellipses, this corresponds to cross-lines. These intersect the ellipses + // at less shallow angles than the other two options. + if (mus.size() == 3) { + std::swap(mus[1], mus[0]); + } + /// Discriminant within this radius of 0 will be considered zero. + static Coord const discriminant_precision = 1e-10; + + for (Coord candidate_mu : mus) { + Coord const aa = std::fma(candidate_mu, A, a); + Coord const bb = std::fma(candidate_mu, B, b); + Coord const cc = std::fma(candidate_mu, C, c); + Coord const delta = sqr(bb) - 4*aa*cc; + if (delta < -discriminant_precision) { + continue; + } + mu = candidate_mu; + break; + } + + // if no suitable mu was found, there are no intersections + if (mu == infinity()) { + return {}; + } + + // Create the degenerate conic and decompose it into lines. + std::array<double, 6> degen = {std::fma(mu, A, a), std::fma(mu, B, b), std::fma(mu, C, c), + std::fma(mu, D, d), std::fma(mu, E, e), std::fma(mu, F, f)}; + rescale_homogenous(degen); + auto const lines = xAx(degen[0], degen[1], degen[2], + degen[3], degen[4], degen[5]).decompose_df(discriminant_precision); + + // intersect with the obtained lines and report intersections + std::vector<ShapeIntersection> result; + for (auto const &line : lines) { + if (line.isDegenerate()) { + continue; + } + auto as = intersect(line); + // NOTE: If we only cared about the intersection points, we could simply + // intersect this ellipse with the lines and ignore the other ellipse. + // But we need the time coordinates on the other ellipse as well. + auto bs = other.intersect(line); + if (as.empty() || bs.empty()) { + continue; + } + // Due to numerical errors, a tangency may sometimes be found as 1 intersection + // on one ellipse and 2 intersections on the other. If this happens, we average + // the points of the two intersections. + auto const intersection_average = [](ShapeIntersection const &i, + ShapeIntersection const &j) -> ShapeIntersection + { + return ShapeIntersection(i.first, j.first, middle_point(i.point(), j.point())); + }; + auto const synthesize_intersection = [&](ShapeIntersection const &i, + ShapeIntersection const &j) -> void + { + result.emplace_back(i.first, j.first, middle_point(i.point(), j.point())); + }; + if (as.size() == 2) { + if (bs.size() == 2) { + synthesize_intersection(as[0], bs[0]); + synthesize_intersection(as[1], bs[1]); + } else if (bs.size() == 1) { + synthesize_intersection(intersection_average(as[0], as[1]), bs[0]); + } + } else if (as.size() == 1) { + if (bs.size() == 2) { + synthesize_intersection(as[0], intersection_average(bs[0], bs[1])); + } else if (bs.size() == 1) { + synthesize_intersection(as[0], bs[0]); + } + } + } + return result; +} + +std::vector<ShapeIntersection> Ellipse::intersect(D2<Bezier> const &b) const +{ + Coord A, B, C, D, E, F; + coefficients(A, B, C, D, E, F); + + // We plug the X and Y curves into the implicit equation and solve for t. + Bezier x = A*b[X]*b[X] + B*b[X]*b[Y] + C*b[Y]*b[Y] + D*b[X] + E*b[Y] + F; + std::vector<Coord> r = x.roots(); + + std::vector<ShapeIntersection> result; + for (double & i : r) { + Point p = b.valueAt(i); + result.emplace_back(timeAt(p), i, p); + } + return result; +} + +bool Ellipse::operator==(Ellipse const &other) const +{ + if (_center != other._center) return false; + + Ellipse a = this->canonicalForm(); + Ellipse b = other.canonicalForm(); + + if (a._rays != b._rays) return false; + if (a._angle != b._angle) return false; + + return true; +} + + +bool are_near(Ellipse const &a, Ellipse const &b, Coord precision) +{ + // We want to know whether no point on ellipse a is further than precision + // from the corresponding point on ellipse b. To check this, we compute + // the four extreme points at the end of each ray for each ellipse + // and check whether they are sufficiently close. + + // First, we need to correct the angles on the ellipses, so that they are + // no further than M_PI/4 apart. This can always be done by rotating + // and exchanging axes. + Ellipse ac = a, bc = b; + if (distance(ac.rotationAngle(), bc.rotationAngle()).radians0() >= M_PI/2) { + ac.setRotationAngle(ac.rotationAngle() + M_PI); + } + if (distance(ac.rotationAngle(), bc.rotationAngle()) >= M_PI/4) { + Angle d1 = distance(ac.rotationAngle() + M_PI/2, bc.rotationAngle()); + Angle d2 = distance(ac.rotationAngle() - M_PI/2, bc.rotationAngle()); + Coord adj = d1.radians0() < d2.radians0() ? M_PI/2 : -M_PI/2; + ac.setRotationAngle(ac.rotationAngle() + adj); + ac.setRays(ac.ray(Y), ac.ray(X)); + } + + // Do the actual comparison by computing four points on each ellipse. + Point tps[] = {Point(1,0), Point(0,1), Point(-1,0), Point(0,-1)}; + for (auto & tp : tps) { + if (!are_near(tp * ac.unitCircleTransform(), + tp * bc.unitCircleTransform(), + precision)) + return false; + } + return true; +} + +std::ostream &operator<<(std::ostream &out, Ellipse const &e) +{ + out << "Ellipse(" << e.center() << ", " << e.rays() + << ", " << format_coord_nice(e.rotationAngle()) << ")"; + return out; +} + +} // end namespace Geom + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : + + |