diff options
Diffstat (limited to '')
-rw-r--r-- | src/2geom/line.cpp | 610 |
1 files changed, 610 insertions, 0 deletions
diff --git a/src/2geom/line.cpp b/src/2geom/line.cpp new file mode 100644 index 0000000..3db3039 --- /dev/null +++ b/src/2geom/line.cpp @@ -0,0 +1,610 @@ +/* + * Infinite Straight Line + * + * Copyright 2008 Marco Cecchetti <mrcekets at gmail.com> + * Nathan Hurst + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include <algorithm> +#include <optional> +#include <2geom/line.h> +#include <2geom/math-utils.h> + +namespace Geom +{ + +/** + * @class Line + * @brief Infinite line on a plane. + * + * A line is specified as two points through which it passes. Lines can be interpreted as functions + * \f$ f: (-\infty, \infty) \to \mathbb{R}^2\f$. Zero corresponds to the first (origin) point, + * one corresponds to the second (final) point. All other points are computed as a linear + * interpolation between those two: \f$p = (1-t) a + t b\f$. Many such functions have the same + * image and therefore represent the same lines; for example, adding \f$b-a\f$ to both points + * yields the same line. + * + * 2Geom can represent the same line in many ways by design: using a different representation + * would lead to precision loss. For example, a line from (1e30, 1e30) to (10,0) would actually + * evaluate to (0,0) at time 1 if it was stored as origin and normalized versor, + * or origin and angle. + * + * @ingroup Primitives + */ + +/** @brief Set the line by solving the line equation. + * A line is a set of points that satisfies the line equation + * \f$Ax + By + C = 0\f$. This function changes the line so that its points + * satisfy the line equation with the given coefficients. */ +void Line::setCoefficients (Coord a, Coord b, Coord c) +{ + // degenerate case + if (a == 0 && b == 0) { + if (c != 0) { + THROW_LOGICALERROR("the passed coefficients give the empty set"); + } + _initial = Point(0,0); + _final = Point(0,0); + return; + } + + // The way final / initial points are set based on coefficients is somewhat unusual. + // This is done to make sure that calling coefficients() will give back + // (almost) the same values. + + // vertical case + if (a == 0) { + // b must be nonzero + _initial = Point(-b/2, -c / b); + _final = _initial; + _final[X] = b/2; + return; + } + + // horizontal case + if (b == 0) { + _initial = Point(-c / a, a/2); + _final = _initial; + _final[Y] = -a/2; + return; + } + + // This gives reasonable results regardless of the magnitudes of a, b and c. + _initial = Point(-b/2,a/2); + _final = Point(b/2,-a/2); + + Point offset(-c/(2*a), -c/(2*b)); + + _initial += offset; + _final += offset; +} + +void Line::coefficients(Coord &a, Coord &b, Coord &c) const +{ + Point v = vector().cw(); + a = v[X]; + b = v[Y]; + c = cross(_initial, _final); +} + +/** @brief Get the implicit line equation coefficients. + * Note that conversion to implicit form always causes loss of + * precision when dealing with lines that start far from the origin + * and end very close to it. It is recommended to normalize the line + * before converting it to implicit form. + * @return Vector with three values corresponding to the A, B and C + * coefficients of the line equation for this line. */ +std::vector<Coord> Line::coefficients() const +{ + std::vector<Coord> c(3); + coefficients(c[0], c[1], c[2]); + return c; +} + +/** @brief Find intersection with an axis-aligned line. + * @param v Coordinate of the axis-aligned line + * @param d Which axis the coordinate is on. X means a vertical line, Y means a horizontal line. + * @return Time values at which this line intersects the query line. */ +std::vector<Coord> Line::roots(Coord v, Dim2 d) const { + std::vector<Coord> result; + Coord r = root(v, d); + if (std::isfinite(r)) { + result.push_back(r); + } + return result; +} + +Coord Line::root(Coord v, Dim2 d) const +{ + assert(d == X || d == Y); + Point vs = vector(); + if (vs[d] != 0) { + return (v - _initial[d]) / vs[d]; + } else { + return nan(""); + } +} + +std::optional<LineSegment> Line::clip(Rect const &r) const +{ + Point v = vector(); + // handle horizontal and vertical lines first, + // since the root-based code below will break for them + for (unsigned i = 0; i < 2; ++i) { + Dim2 d = (Dim2) i; + Dim2 o = other_dimension(d); + if (v[d] != 0) continue; + if (r[d].contains(_initial[d])) { + Point a, b; + a[o] = r[o].min(); + b[o] = r[o].max(); + a[d] = b[d] = _initial[d]; + if (v[o] > 0) { + return LineSegment(a, b); + } else { + return LineSegment(b, a); + } + } else { + return std::nullopt; + } + } + + Interval xpart(root(r[X].min(), X), root(r[X].max(), X)); + Interval ypart(root(r[Y].min(), Y), root(r[Y].max(), Y)); + if (!xpart.isFinite() || !ypart.isFinite()) { + return std::nullopt; + } + + OptInterval common = xpart & ypart; + if (common) { + Point p1 = pointAt(common->min()), p2 = pointAt(common->max()); + LineSegment result(r.clamp(p1), r.clamp(p2)); + return result; + } else { + return std::nullopt; + } + + /* old implementation using coefficients: + + if (fabs(b) > fabs(a)) { + p0 = Point(r[X].min(), (-c - a*r[X].min())/b); + if (p0[Y] < r[Y].min()) + p0 = Point((-c - b*r[Y].min())/a, r[Y].min()); + if (p0[Y] > r[Y].max()) + p0 = Point((-c - b*r[Y].max())/a, r[Y].max()); + p1 = Point(r[X].max(), (-c - a*r[X].max())/b); + if (p1[Y] < r[Y].min()) + p1 = Point((-c - b*r[Y].min())/a, r[Y].min()); + if (p1[Y] > r[Y].max()) + p1 = Point((-c - b*r[Y].max())/a, r[Y].max()); + } else { + p0 = Point((-c - b*r[Y].min())/a, r[Y].min()); + if (p0[X] < r[X].min()) + p0 = Point(r[X].min(), (-c - a*r[X].min())/b); + if (p0[X] > r[X].max()) + p0 = Point(r[X].max(), (-c - a*r[X].max())/b); + p1 = Point((-c - b*r[Y].max())/a, r[Y].max()); + if (p1[X] < r[X].min()) + p1 = Point(r[X].min(), (-c - a*r[X].min())/b); + if (p1[X] > r[X].max()) + p1 = Point(r[X].max(), (-c - a*r[X].max())/b); + } + return LineSegment(p0, p1); */ +} + +/** @brief Get a time value corresponding to a point. + * @param p Point on the line. If the point is not on the line, + * the returned value will be meaningless. + * @return Time value t such that \f$f(t) = p\f$. + * @see timeAtProjection */ +Coord Line::timeAt(Point const &p) const +{ + Point v = vector(); + // degenerate case + if (v[X] == 0 && v[Y] == 0) { + return 0; + } + + // use the coordinate that will give better precision + if (fabs(v[X]) > fabs(v[Y])) { + return (p[X] - _initial[X]) / v[X]; + } else { + return (p[Y] - _initial[Y]) / v[Y]; + } +} + +/** @brief Create a transformation that maps one line to another. + * This will return a transformation \f$A\f$ such that + * \f$L_1(t) \cdot A = L_2(t)\f$, where \f$L_1\f$ is this line + * and \f$L_2\f$ is the line passed as the parameter. The returned + * transformation will preserve angles. */ +Affine Line::transformTo(Line const &other) const +{ + Affine result = Translate(-_initial); + result *= Rotate(angle_between(vector(), other.vector())); + result *= Scale(other.vector().length() / vector().length()); + result *= Translate(other._initial); + return result; +} + +std::vector<ShapeIntersection> Line::intersect(Line const &other) const +{ + std::vector<ShapeIntersection> result; + + Point v1 = vector(); + Point v2 = other.vector(); + Coord cp = cross(v1, v2); + if (cp == 0) return result; + + Point odiff = other.initialPoint() - initialPoint(); + Coord t1 = cross(odiff, v2) / cp; + Coord t2 = cross(odiff, v1) / cp; + result.emplace_back(*this, other, t1, t2); + return result; +} + +std::vector<ShapeIntersection> Line::intersect(Ray const &r) const +{ + Line other(r); + std::vector<ShapeIntersection> result = intersect(other); + filter_ray_intersections(result, false, true); + return result; +} + +std::vector<ShapeIntersection> Line::intersect(LineSegment const &ls) const +{ + Line other(ls); + std::vector<ShapeIntersection> result = intersect(other); + filter_line_segment_intersections(result, false, true); + return result; +} + + + +void filter_line_segment_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b) +{ + Interval unit(0, 1); + std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend(); + while (i != last) { + if ((a && !unit.contains(i->first)) || (b && !unit.contains(i->second))) { + xs.erase((++i).base()); + } else { + ++i; + } + } +} + +void filter_ray_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b) +{ + Interval unit(0, 1); + std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend(); + while (i != last) { + if ((a && i->first < 0) || (b && i->second < 0)) { + xs.erase((++i).base()); + } else { + ++i; + } + } +} + +namespace detail +{ + +inline +OptCrossing intersection_impl(Point const &v1, Point const &o1, + Point const &v2, Point const &o2) +{ + Coord cp = cross(v1, v2); + if (cp == 0) return OptCrossing(); + + Point odiff = o2 - o1; + + Crossing c; + c.ta = cross(odiff, v2) / cp; + c.tb = cross(odiff, v1) / cp; + return c; +} + + +OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i) +{ + using std::swap; + + OptCrossing crossing = + intersection_impl(r1.vector(), r1.origin(), + l2.vector(), l2.origin() ); + + if (crossing) { + if (crossing->ta < 0) { + return OptCrossing(); + } else { + if (i != 0) { + swap(crossing->ta, crossing->tb); + } + return crossing; + } + } + if (are_near(r1.origin(), l2)) { + THROW_INFINITESOLUTIONS(); + } else { + return OptCrossing(); + } +} + + +OptCrossing intersection_impl( LineSegment const& ls1, + Line const& l2, + unsigned int i ) +{ + using std::swap; + + OptCrossing crossing = + intersection_impl(ls1.finalPoint() - ls1.initialPoint(), + ls1.initialPoint(), + l2.vector(), + l2.origin() ); + + if (crossing) { + if ( crossing->getTime(0) < 0 + || crossing->getTime(0) > 1 ) + { + return OptCrossing(); + } else { + if (i != 0) { + swap((*crossing).ta, (*crossing).tb); + } + return crossing; + } + } + if (are_near(ls1.initialPoint(), l2)) { + THROW_INFINITESOLUTIONS(); + } else { + return OptCrossing(); + } +} + + +OptCrossing intersection_impl( LineSegment const& ls1, + Ray const& r2, + unsigned int i ) +{ + using std::swap; + + Point direction = ls1.finalPoint() - ls1.initialPoint(); + OptCrossing crossing = + intersection_impl( direction, + ls1.initialPoint(), + r2.vector(), + r2.origin() ); + + if (crossing) { + if ( (crossing->getTime(0) < 0) + || (crossing->getTime(0) > 1) + || (crossing->getTime(1) < 0) ) + { + return OptCrossing(); + } else { + if (i != 0) { + swap(crossing->ta, crossing->tb); + } + return crossing; + } + } + + if ( are_near(r2.origin(), ls1) ) { + bool eqvs = (dot(direction, r2.vector()) > 0); + if ( are_near(ls1.initialPoint(), r2.origin()) && !eqvs) { + crossing->ta = crossing->tb = 0; + return crossing; + } else if ( are_near(ls1.finalPoint(), r2.origin()) && eqvs) { + if (i == 0) { + crossing->ta = 1; + crossing->tb = 0; + } else { + crossing->ta = 0; + crossing->tb = 1; + } + return crossing; + } else { + THROW_INFINITESOLUTIONS(); + } + } else if ( are_near(ls1.initialPoint(), r2) ) { + THROW_INFINITESOLUTIONS(); + } else { + OptCrossing no_crossing; + return no_crossing; + } +} + +} // end namespace detail + + + +OptCrossing intersection(Line const& l1, Line const& l2) +{ + OptCrossing c = detail::intersection_impl( + l1.vector(), l1.origin(), + l2.vector(), l2.origin()); + + if (!c && distance(l1.origin(), l2) == 0) { + THROW_INFINITESOLUTIONS(); + } + return c; +} + +OptCrossing intersection(Ray const& r1, Ray const& r2) +{ + OptCrossing crossing = + detail::intersection_impl( r1.vector(), r1.origin(), + r2.vector(), r2.origin() ); + + if (crossing) + { + if ( crossing->ta < 0 + || crossing->tb < 0 ) + { + OptCrossing no_crossing; + return no_crossing; + } + else + { + return crossing; + } + } + + if ( are_near(r1.origin(), r2) || are_near(r2.origin(), r1) ) + { + if ( are_near(r1.origin(), r2.origin()) + && !are_near(r1.vector(), r2.vector()) ) + { + crossing->ta = crossing->tb = 0; + return crossing; + } + else + { + THROW_INFINITESOLUTIONS(); + } + } + else + { + OptCrossing no_crossing; + return no_crossing; + } +} + + +OptCrossing intersection( LineSegment const& ls1, LineSegment const& ls2 ) +{ + Point direction1 = ls1.finalPoint() - ls1.initialPoint(); + Point direction2 = ls2.finalPoint() - ls2.initialPoint(); + OptCrossing crossing = + detail::intersection_impl( direction1, + ls1.initialPoint(), + direction2, + ls2.initialPoint() ); + + if (crossing) + { + if ( crossing->getTime(0) < 0 + || crossing->getTime(0) > 1 + || crossing->getTime(1) < 0 + || crossing->getTime(1) > 1 ) + { + OptCrossing no_crossing; + return no_crossing; + } + else + { + return crossing; + } + } + + bool eqvs = (dot(direction1, direction2) > 0); + if ( are_near(ls2.initialPoint(), ls1) ) + { + if ( are_near(ls1.initialPoint(), ls2.initialPoint()) && !eqvs ) + { + crossing->ta = crossing->tb = 0; + return crossing; + } + else if ( are_near(ls1.finalPoint(), ls2.initialPoint()) && eqvs ) + { + crossing->ta = 1; + crossing->tb = 0; + return crossing; + } + else + { + THROW_INFINITESOLUTIONS(); + } + } + else if ( are_near(ls2.finalPoint(), ls1) ) + { + if ( are_near(ls1.finalPoint(), ls2.finalPoint()) && !eqvs ) + { + crossing->ta = crossing->tb = 1; + return crossing; + } + else if ( are_near(ls1.initialPoint(), ls2.finalPoint()) && eqvs ) + { + crossing->ta = 0; + crossing->tb = 1; + return crossing; + } + else + { + THROW_INFINITESOLUTIONS(); + } + } + else + { + OptCrossing no_crossing; + return no_crossing; + } +} + +Line make_angle_bisector_line(Line const& l1, Line const& l2) +{ + OptCrossing crossing; + try + { + crossing = intersection(l1, l2); + } + catch(InfiniteSolutions const &e) + { + return l1; + } + if (!crossing) + { + THROW_RANGEERROR("passed lines are parallel"); + } + Point O = l1.pointAt(crossing->ta); + Point A = l1.pointAt(crossing->ta + 1); + double angle = angle_between(l1.vector(), l2.vector()); + Point B = (angle > 0) ? l2.pointAt(crossing->tb + 1) + : l2.pointAt(crossing->tb - 1); + + return make_angle_bisector_line(A, O, B); +} + + + + +} // end namespace Geom + + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(substatement-open . 0)) + indent-tabs-mode:nil + c-brace-offset:0 + fill-column:99 + End: + vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 : +*/ |