summaryrefslogtreecommitdiffstats
path: root/src/2geom/path-intersection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/path-intersection.cpp')
-rw-r--r--src/2geom/path-intersection.cpp728
1 files changed, 728 insertions, 0 deletions
diff --git a/src/2geom/path-intersection.cpp b/src/2geom/path-intersection.cpp
new file mode 100644
index 0000000..280d7ba
--- /dev/null
+++ b/src/2geom/path-intersection.cpp
@@ -0,0 +1,728 @@
+#include <2geom/path-intersection.h>
+
+#include <2geom/ord.h>
+
+//for path_direction:
+#include <2geom/sbasis-geometric.h>
+#include <2geom/line.h>
+#ifdef HAVE_GSL
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_multiroots.h>
+#endif
+
+namespace Geom {
+
+/// Compute winding number of the path at the specified point
+int winding(Path const &path, Point const &p) {
+ return path.winding(p);
+}
+
+/**
+ * This function should only be applied to simple paths (regions), as otherwise
+ * a boolean winding direction is undefined. It returns true for fill, false for
+ * hole. Defaults to using the sign of area when it reaches funny cases.
+ */
+bool path_direction(Path const &p) {
+ if(p.empty()) return false;
+
+ /*goto doh;
+ //could probably be more efficient, but this is a quick job
+ double y = p.initialPoint()[Y];
+ double x = p.initialPoint()[X];
+ Cmp res = cmp(p[0].finalPoint()[Y], y);
+ for(unsigned i = 1; i < p.size(); i++) {
+ Cmp final_to_ray = cmp(p[i].finalPoint()[Y], y);
+ Cmp initial_to_ray = cmp(p[i].initialPoint()[Y], y);
+ // if y is included, these will have opposite values, giving order.
+ Cmp c = cmp(final_to_ray, initial_to_ray);
+ if(c != EQUAL_TO) {
+ std::vector<double> rs = p[i].roots(y, Y);
+ for(unsigned j = 0; j < rs.size(); j++) {
+ double nx = p[i].valueAt(rs[j], X);
+ if(nx > x) {
+ x = nx;
+ res = c;
+ }
+ }
+ } else if(final_to_ray == EQUAL_TO) goto doh;
+ }
+ return res < 0;
+
+ doh:*/
+ //Otherwise fallback on area
+
+ Piecewise<D2<SBasis> > pw = p.toPwSb();
+ double area;
+ Point centre;
+ Geom::centroid(pw, centre, area);
+ return area > 0;
+}
+
+//pair intersect code based on njh's pair-intersect
+
+/** A little sugar for appending a list to another */
+template<typename T>
+void append(T &a, T const &b) {
+ a.insert(a.end(), b.begin(), b.end());
+}
+
+/**
+ * Finds the intersection between the lines defined by A0 & A1, and B0 & B1.
+ * Returns through the last 3 parameters, returning the t-values on the lines
+ * and the cross-product of the deltas (a useful byproduct). The return value
+ * indicates if the time values are within their proper range on the line segments.
+ */
+bool
+linear_intersect(Point const &A0, Point const &A1, Point const &B0, Point const &B1,
+ double &tA, double &tB, double &det) {
+ bool both_lines_non_zero = (!are_near(A0, A1)) && (!are_near(B0, B1));
+
+ // Cramer's rule as cross products
+ Point Ad = A1 - A0,
+ Bd = B1 - B0,
+ d = B0 - A0;
+ det = cross(Ad, Bd);
+
+ double det_rel = det; // Calculate the determinant of the normalized vectors
+ if (both_lines_non_zero) {
+ det_rel /= Ad.length();
+ det_rel /= Bd.length();
+ }
+
+ if( fabs(det_rel) < 1e-12 ) { // If the cross product is NEARLY zero,
+ // Then one of the linesegments might have length zero
+ if (both_lines_non_zero) {
+ // If that's not the case, then we must have either:
+ // - parallel lines, with no intersections, or
+ // - coincident lines, with an infinite number of intersections
+ // Either is quite useless, so we'll just bail out
+ return false;
+ } // Else, one of the linesegments is zero, and we might still be able to calculate a single intersection point
+ } // Else we haven't bailed out, and we'll try to calculate the intersections
+
+ double detinv = 1.0 / det;
+ tA = cross(d, Bd) * detinv;
+ tB = cross(d, Ad) * detinv;
+ return (tA >= 0.) && (tA <= 1.) && (tB >= 0.) && (tB <= 1.);
+}
+
+
+#if 0
+typedef union dbl_64{
+ long long i64;
+ double d64;
+};
+
+static double EpsilonOf(double value)
+{
+ dbl_64 s;
+ s.d64 = value;
+ if(s.i64 == 0)
+ {
+ s.i64++;
+ return s.d64 - value;
+ }
+ else if(s.i64-- < 0)
+ return s.d64 - value;
+ else
+ return value - s.d64;
+}
+#endif
+
+#ifdef HAVE_GSL
+struct rparams {
+ Curve const &A;
+ Curve const &B;
+};
+
+static int
+intersect_polish_f (const gsl_vector * x, void *params,
+ gsl_vector * f)
+{
+ const double x0 = gsl_vector_get (x, 0);
+ const double x1 = gsl_vector_get (x, 1);
+
+ Geom::Point dx = ((struct rparams *) params)->A(x0) -
+ ((struct rparams *) params)->B(x1);
+
+ gsl_vector_set (f, 0, dx[0]);
+ gsl_vector_set (f, 1, dx[1]);
+
+ return GSL_SUCCESS;
+}
+#endif
+
+static void
+intersect_polish_root (Curve const &A, double &s, Curve const &B, double &t)
+{
+ std::vector<Point> as, bs;
+ as = A.pointAndDerivatives(s, 2);
+ bs = B.pointAndDerivatives(t, 2);
+ Point F = as[0] - bs[0];
+ double best = dot(F, F);
+
+ for(int i = 0; i < 4; i++) {
+
+ /**
+ we want to solve
+ J*(x1 - x0) = f(x0)
+
+ |dA(s)[0] -dB(t)[0]| (X1 - X0) = A(s) - B(t)
+ |dA(s)[1] -dB(t)[1]|
+ **/
+
+ // We're using the standard transformation matricies, which is numerically rather poor. Much better to solve the equation using elimination.
+
+ Affine jack(as[1][0], as[1][1],
+ -bs[1][0], -bs[1][1],
+ 0, 0);
+ Point soln = (F)*jack.inverse();
+ double ns = s - soln[0];
+ double nt = t - soln[1];
+
+ if (ns<0) ns=0;
+ else if (ns>1) ns=1;
+ if (nt<0) nt=0;
+ else if (nt>1) nt=1;
+
+ as = A.pointAndDerivatives(ns, 2);
+ bs = B.pointAndDerivatives(nt, 2);
+ F = as[0] - bs[0];
+ double trial = dot(F, F);
+ if (trial > best*0.1) // we have standards, you know
+ // At this point we could do a line search
+ break;
+ best = trial;
+ s = ns;
+ t = nt;
+ }
+
+#ifdef HAVE_GSL
+ if(0) { // the GSL version is more accurate, but taints this with GPL
+ int status;
+ size_t iter = 0;
+ const size_t n = 2;
+ struct rparams p = {A, B};
+ gsl_multiroot_function f = {&intersect_polish_f, n, &p};
+
+ double x_init[2] = {s, t};
+ gsl_vector *x = gsl_vector_alloc (n);
+
+ gsl_vector_set (x, 0, x_init[0]);
+ gsl_vector_set (x, 1, x_init[1]);
+
+ const gsl_multiroot_fsolver_type *T = gsl_multiroot_fsolver_hybrids;
+ gsl_multiroot_fsolver *sol = gsl_multiroot_fsolver_alloc (T, 2);
+ gsl_multiroot_fsolver_set (sol, &f, x);
+
+ do
+ {
+ iter++;
+ status = gsl_multiroot_fsolver_iterate (sol);
+
+ if (status) /* check if solver is stuck */
+ break;
+
+ status =
+ gsl_multiroot_test_residual (sol->f, 1e-12);
+ }
+ while (status == GSL_CONTINUE && iter < 1000);
+
+ s = gsl_vector_get (sol->x, 0);
+ t = gsl_vector_get (sol->x, 1);
+
+ gsl_multiroot_fsolver_free (sol);
+ gsl_vector_free (x);
+ }
+#endif
+}
+
+/**
+ * This uses the local bounds functions of curves to generically intersect two.
+ * It passes in the curves, time intervals, and keeps track of depth, while
+ * returning the results through the Crossings parameter.
+ */
+void pair_intersect(Curve const & A, double Al, double Ah,
+ Curve const & B, double Bl, double Bh,
+ Crossings &ret, unsigned depth = 0) {
+ // std::cout << depth << "(" << Al << ", " << Ah << ")\n";
+ OptRect Ar = A.boundsLocal(Interval(Al, Ah));
+ if (!Ar) return;
+
+ OptRect Br = B.boundsLocal(Interval(Bl, Bh));
+ if (!Br) return;
+
+ if(! Ar->intersects(*Br)) return;
+
+ //Checks the general linearity of the function
+ if((depth > 12)) { // || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
+ //&& B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
+ double tA, tB, c;
+ if(linear_intersect(A.pointAt(Al), A.pointAt(Ah),
+ B.pointAt(Bl), B.pointAt(Bh),
+ tA, tB, c)) {
+ tA = tA * (Ah - Al) + Al;
+ tB = tB * (Bh - Bl) + Bl;
+ intersect_polish_root(A, tA,
+ B, tB);
+ if(depth % 2)
+ ret.push_back(Crossing(tB, tA, c < 0));
+ else
+ ret.push_back(Crossing(tA, tB, c > 0));
+ return;
+ }
+ }
+ if(depth > 12) return;
+ double mid = (Bl + Bh)/2;
+ pair_intersect(B, Bl, mid,
+ A, Al, Ah,
+ ret, depth+1);
+ pair_intersect(B, mid, Bh,
+ A, Al, Ah,
+ ret, depth+1);
+}
+
+Crossings pair_intersect(Curve const & A, Interval const &Ad,
+ Curve const & B, Interval const &Bd) {
+ Crossings ret;
+ pair_intersect(A, Ad.min(), Ad.max(), B, Bd.min(), Bd.max(), ret);
+ return ret;
+}
+
+/** A simple wrapper around pair_intersect */
+Crossings SimpleCrosser::crossings(Curve const &a, Curve const &b) {
+ Crossings ret;
+ pair_intersect(a, 0, 1, b, 0, 1, ret);
+ return ret;
+}
+
+
+//same as below but curves not paths
+void mono_intersect(Curve const &A, double Al, double Ah,
+ Curve const &B, double Bl, double Bh,
+ Crossings &ret, double tol = 0.1, unsigned depth = 0) {
+ if( Al >= Ah || Bl >= Bh) return;
+ //std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";
+
+ Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
+ B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
+ //inline code that this implies? (without rect/interval construction)
+ Rect Ar = Rect(A0, A1), Br = Rect(B0, B1);
+ if(!Ar.intersects(Br) || A0 == A1 || B0 == B1) return;
+
+ if(depth > 12 || (Ar.maxExtent() < tol && Ar.maxExtent() < tol)) {
+ double tA, tB, c;
+ if(linear_intersect(A.pointAt(Al), A.pointAt(Ah),
+ B.pointAt(Bl), B.pointAt(Bh),
+ tA, tB, c)) {
+ tA = tA * (Ah - Al) + Al;
+ tB = tB * (Bh - Bl) + Bl;
+ intersect_polish_root(A, tA,
+ B, tB);
+ if(depth % 2)
+ ret.push_back(Crossing(tB, tA, c < 0));
+ else
+ ret.push_back(Crossing(tA, tB, c > 0));
+ return;
+ }
+ }
+ if(depth > 12) return;
+ double mid = (Bl + Bh)/2;
+ mono_intersect(B, Bl, mid,
+ A, Al, Ah,
+ ret, tol, depth+1);
+ mono_intersect(B, mid, Bh,
+ A, Al, Ah,
+ ret, tol, depth+1);
+}
+
+Crossings mono_intersect(Curve const & A, Interval const &Ad,
+ Curve const & B, Interval const &Bd) {
+ Crossings ret;
+ mono_intersect(A, Ad.min(), Ad.max(), B, Bd.min(), Bd.max(), ret);
+ return ret;
+}
+
+/**
+ * Takes two paths and time ranges on them, with the invariant that the
+ * paths are monotonic on the range. Splits A when the linear intersection
+ * doesn't exist or is inaccurate. Uses the fact that it is monotonic to
+ * do very fast local bounds.
+ */
+void mono_pair(Path const &A, double Al, double Ah,
+ Path const &B, double Bl, double Bh,
+ Crossings &ret, double /*tol*/, unsigned depth = 0) {
+ if( Al >= Ah || Bl >= Bh) return;
+ std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";
+
+ Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
+ B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
+ //inline code that this implies? (without rect/interval construction)
+ Rect Ar = Rect(A0, A1), Br = Rect(B0, B1);
+ if(!Ar.intersects(Br) || A0 == A1 || B0 == B1) return;
+
+ if(depth > 12 || (Ar.maxExtent() < 0.1 && Ar.maxExtent() < 0.1)) {
+ double tA, tB, c;
+ if(linear_intersect(A0, A1, B0, B1,
+ tA, tB, c)) {
+ tA = tA * (Ah - Al) + Al;
+ tB = tB * (Bh - Bl) + Bl;
+ if(depth % 2)
+ ret.push_back(Crossing(tB, tA, c < 0));
+ else
+ ret.push_back(Crossing(tA, tB, c > 0));
+ return;
+ }
+ }
+ if(depth > 12) return;
+ double mid = (Bl + Bh)/2;
+ mono_pair(B, Bl, mid,
+ A, Al, Ah,
+ ret, depth+1);
+ mono_pair(B, mid, Bh,
+ A, Al, Ah,
+ ret, depth+1);
+}
+
+/** This returns the times when the x or y derivative is 0 in the curve. */
+std::vector<double> curve_mono_splits(Curve const &d) {
+ Curve* deriv = d.derivative();
+ std::vector<double> rs = deriv->roots(0, X);
+ append(rs, deriv->roots(0, Y));
+ delete deriv;
+ std::sort(rs.begin(), rs.end());
+ return rs;
+}
+
+/** Convenience function to add a value to each entry in a vector of doubles. */
+std::vector<double> offset_doubles(std::vector<double> const &x, double offs) {
+ std::vector<double> ret;
+ for(double i : x) {
+ ret.push_back(i + offs);
+ }
+ return ret;
+}
+
+/**
+ * Finds all the monotonic splits for a path. Only includes the split between
+ * curves if they switch derivative directions at that point.
+ */
+std::vector<double> path_mono_splits(Path const &p) {
+ std::vector<double> ret;
+ if(p.empty()) return ret;
+
+ int pdx = 2, pdy = 2; // Previous derivative direction
+ for(unsigned i = 0; i < p.size(); i++) {
+ std::vector<double> spl = offset_doubles(curve_mono_splits(p[i]), i);
+ int dx = p[i].initialPoint()[X] > (spl.empty() ? p[i].finalPoint()[X] : p.valueAt(spl.front(), X)) ? 1 : 0;
+ int dy = p[i].initialPoint()[Y] > (spl.empty() ? p[i].finalPoint()[Y] : p.valueAt(spl.front(), Y)) ? 1 : 0;
+ //The direction changed, include the split time
+ if(dx != pdx || dy != pdy) {
+ ret.push_back(i);
+ pdx = dx; pdy = dy;
+ }
+ append(ret, spl);
+ }
+ return ret;
+}
+
+/**
+ * Applies path_mono_splits to multiple paths, and returns the results such that
+ * time-set i corresponds to Path i.
+ */
+std::vector<std::vector<double> > paths_mono_splits(PathVector const &ps) {
+ std::vector<std::vector<double> > ret;
+ for(const auto & p : ps)
+ ret.push_back(path_mono_splits(p));
+ return ret;
+}
+
+/**
+ * Processes the bounds for a list of paths and a list of splits on them, yielding a list of rects for each.
+ * Each entry i corresponds to path i of the input. The number of rects in each entry is guaranteed to be the
+ * number of splits for that path, subtracted by one.
+ */
+std::vector<std::vector<Rect> > split_bounds(PathVector const &p, std::vector<std::vector<double> > splits) {
+ std::vector<std::vector<Rect> > ret;
+ for(unsigned i = 0; i < p.size(); i++) {
+ std::vector<Rect> res;
+ for(unsigned j = 1; j < splits[i].size(); j++)
+ res.emplace_back(p[i].pointAt(splits[i][j-1]), p[i].pointAt(splits[i][j]));
+ ret.push_back(res);
+ }
+ return ret;
+}
+
+/**
+ * This is the main routine of "MonoCrosser", and implements a monotonic strategy on multiple curves.
+ * Finds crossings between two sets of paths, yielding a CrossingSet. [0, a.size()) of the return correspond
+ * to the sorted crossings of a with paths of b. The rest of the return, [a.size(), a.size() + b.size()],
+ * corresponds to the sorted crossings of b with paths of a.
+ *
+ * This function does two sweeps, one on the bounds of each path, and after that cull, one on the curves within.
+ * This leads to a certain amount of code complexity, however, most of that is factored into the above functions
+ */
+CrossingSet MonoCrosser::crossings(PathVector const &a, PathVector const &b) {
+ if(b.empty()) return CrossingSet(a.size(), Crossings());
+ CrossingSet results(a.size() + b.size(), Crossings());
+ if(a.empty()) return results;
+
+ std::vector<std::vector<double> > splits_a = paths_mono_splits(a), splits_b = paths_mono_splits(b);
+ std::vector<std::vector<Rect> > bounds_a = split_bounds(a, splits_a), bounds_b = split_bounds(b, splits_b);
+
+ std::vector<Rect> bounds_a_union, bounds_b_union;
+ for(auto & i : bounds_a) bounds_a_union.push_back(union_list(i));
+ for(auto & i : bounds_b) bounds_b_union.push_back(union_list(i));
+
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds_a_union, bounds_b_union);
+ Crossings n;
+ for(unsigned i = 0; i < cull.size(); i++) {
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ unsigned jc = j + a.size();
+ Crossings res;
+
+ //Sweep of the monotonic portions
+ std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bounds_a[i], bounds_b[j]);
+ for(unsigned k = 0; k < cull2.size(); k++) {
+ for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
+ unsigned l = cull2[k][lx];
+ mono_pair(a[i], splits_a[i][k-1], splits_a[i][k],
+ b[j], splits_b[j][l-1], splits_b[j][l],
+ res, .1);
+ }
+ }
+
+ for(auto & re : res) { re.a = i; re.b = jc; }
+
+ merge_crossings(results[i], res, i);
+ merge_crossings(results[i], res, jc);
+ }
+ }
+
+ return results;
+}
+
+/* This function is similar codewise to the MonoCrosser, the main difference is that it deals with
+ * only one set of paths and includes self intersection
+CrossingSet crossings_among(PathVector const &p) {
+ CrossingSet results(p.size(), Crossings());
+ if(p.empty()) return results;
+
+ std::vector<std::vector<double> > splits = paths_mono_splits(p);
+ std::vector<std::vector<Rect> > prs = split_bounds(p, splits);
+ std::vector<Rect> rs;
+ for(unsigned i = 0; i < prs.size(); i++) rs.push_back(union_list(prs[i]));
+
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(rs);
+
+ //we actually want to do the self-intersections, so add em in:
+ for(unsigned i = 0; i < cull.size(); i++) cull[i].push_back(i);
+
+ for(unsigned i = 0; i < cull.size(); i++) {
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ Crossings res;
+
+ //Sweep of the monotonic portions
+ std::vector<std::vector<unsigned> > cull2 = sweep_bounds(prs[i], prs[j]);
+ for(unsigned k = 0; k < cull2.size(); k++) {
+ for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
+ unsigned l = cull2[k][lx];
+ mono_pair(p[i], splits[i][k-1], splits[i][k],
+ p[j], splits[j][l-1], splits[j][l],
+ res, .1);
+ }
+ }
+
+ for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = j; }
+
+ merge_crossings(results[i], res, i);
+ merge_crossings(results[j], res, j);
+ }
+ }
+
+ return results;
+}
+*/
+
+
+Crossings curve_self_crossings(Curve const &a) {
+ Crossings res;
+ std::vector<double> spl;
+ spl.push_back(0);
+ append(spl, curve_mono_splits(a));
+ spl.push_back(1);
+ for(unsigned i = 1; i < spl.size(); i++)
+ for(unsigned j = i+1; j < spl.size(); j++)
+ pair_intersect(a, spl[i-1], spl[i], a, spl[j-1], spl[j], res);
+ return res;
+}
+
+/*
+void mono_curve_intersect(Curve const & A, double Al, double Ah,
+ Curve const & B, double Bl, double Bh,
+ Crossings &ret, unsigned depth=0) {
+ // std::cout << depth << "(" << Al << ", " << Ah << ")\n";
+ Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
+ B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
+ //inline code that this implies? (without rect/interval construction)
+ if(!Rect(A0, A1).intersects(Rect(B0, B1)) || A0 == A1 || B0 == B1) return;
+
+ //Checks the general linearity of the function
+ if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
+ && B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
+ double tA, tB, c;
+ if(linear_intersect(A0, A1, B0, B1, tA, tB, c)) {
+ tA = tA * (Ah - Al) + Al;
+ tB = tB * (Bh - Bl) + Bl;
+ if(depth % 2)
+ ret.push_back(Crossing(tB, tA, c < 0));
+ else
+ ret.push_back(Crossing(tA, tB, c > 0));
+ return;
+ }
+ }
+ if(depth > 12) return;
+ double mid = (Bl + Bh)/2;
+ mono_curve_intersect(B, Bl, mid,
+ A, Al, Ah,
+ ret, depth+1);
+ mono_curve_intersect(B, mid, Bh,
+ A, Al, Ah,
+ ret, depth+1);
+}
+
+std::vector<std::vector<double> > curves_mono_splits(Path const &p) {
+ std::vector<std::vector<double> > ret;
+ for(unsigned i = 0; i <= p.size(); i++) {
+ std::vector<double> spl;
+ spl.push_back(0);
+ append(spl, curve_mono_splits(p[i]));
+ spl.push_back(1);
+ ret.push_back(spl);
+ }
+}
+
+std::vector<std::vector<Rect> > curves_split_bounds(Path const &p, std::vector<std::vector<double> > splits) {
+ std::vector<std::vector<Rect> > ret;
+ for(unsigned i = 0; i < splits.size(); i++) {
+ std::vector<Rect> res;
+ for(unsigned j = 1; j < splits[i].size(); j++)
+ res.push_back(Rect(p.pointAt(splits[i][j-1]+i), p.pointAt(splits[i][j]+i)));
+ ret.push_back(res);
+ }
+ return ret;
+}
+
+Crossings path_self_crossings(Path const &p) {
+ Crossings ret;
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
+ std::vector<std::vector<double> > spl = curves_mono_splits(p);
+ std::vector<std::vector<Rect> > bnds = curves_split_bounds(p, spl);
+ for(unsigned i = 0; i < cull.size(); i++) {
+ Crossings res;
+ for(unsigned k = 1; k < spl[i].size(); k++)
+ for(unsigned l = k+1; l < spl[i].size(); l++)
+ mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[i], spl[i][l-1], spl[i][l], res);
+ offset_crossings(res, i, i);
+ append(ret, res);
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ res.clear();
+
+ std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bnds[i], bnds[j]);
+ for(unsigned k = 0; k < cull2.size(); k++) {
+ for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
+ unsigned l = cull2[k][lx];
+ mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[j], spl[j][l-1], spl[j][l], res);
+ }
+ }
+
+ //if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
+ Crossings res2;
+ for(unsigned k = 0; k < res.size(); k++) {
+ if(res[k].ta != 0 && res[k].ta != 1 && res[k].tb != 0 && res[k].tb != 1) {
+ res.push_back(res[k]);
+ }
+ }
+ res = res2;
+ //}
+ offset_crossings(res, i, j);
+ append(ret, res);
+ }
+ }
+ return ret;
+}
+*/
+
+Crossings self_crossings(Path const &p) {
+ Crossings ret;
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
+ for(unsigned i = 0; i < cull.size(); i++) {
+ Crossings res = curve_self_crossings(p[i]);
+ offset_crossings(res, i, i);
+ append(ret, res);
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ res.clear();
+ pair_intersect(p[i], 0, 1, p[j], 0, 1, res);
+
+ //if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
+ Crossings res2;
+ for(auto & re : res) {
+ if(re.ta != 0 && re.ta != 1 && re.tb != 0 && re.tb != 1) {
+ res2.push_back(re);
+ }
+ }
+ res = res2;
+ //}
+ offset_crossings(res, i, j);
+ append(ret, res);
+ }
+ }
+ return ret;
+}
+
+void flip_crossings(Crossings &crs) {
+ for(auto & cr : crs)
+ cr = Crossing(cr.tb, cr.ta, cr.b, cr.a, !cr.dir);
+}
+
+CrossingSet crossings_among(PathVector const &p) {
+ CrossingSet results(p.size(), Crossings());
+ if(p.empty()) return results;
+
+ SimpleCrosser cc;
+
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
+ for(unsigned i = 0; i < cull.size(); i++) {
+ Crossings res = self_crossings(p[i]);
+ for(auto & re : res) { re.a = re.b = i; }
+ merge_crossings(results[i], res, i);
+ flip_crossings(res);
+ merge_crossings(results[i], res, i);
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+
+ Crossings res = cc.crossings(p[i], p[j]);
+ for(auto & re : res) { re.a = i; re.b = j; }
+ merge_crossings(results[i], res, i);
+ merge_crossings(results[j], res, j);
+ }
+ }
+ return results;
+}
+
+}
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :