diff options
Diffstat (limited to '')
-rw-r--r-- | src/toys/curve-curve-distance.cpp | 1000 |
1 files changed, 1000 insertions, 0 deletions
diff --git a/src/toys/curve-curve-distance.cpp b/src/toys/curve-curve-distance.cpp new file mode 100644 index 0000000..bca0f27 --- /dev/null +++ b/src/toys/curve-curve-distance.cpp @@ -0,0 +1,1000 @@ +/* + * curve-curve distance + * + * Authors: + * Marco Cecchetti <mrcekets at gmail.com> + * + * Copyright 2008 authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include <2geom/d2.h> +#include <2geom/sbasis.h> +#include <2geom/path.h> +#include <2geom/angle.h> +#include <2geom/bezier-to-sbasis.h> +#include <2geom/sbasis-geometric.h> +#include <2geom/piecewise.h> + +#include <toys/path-cairo.h> +#include <toys/toy-framework-2.h> + +#include <2geom/nearest-time.h> +#include <2geom/numeric/linear_system.h> + +#include <algorithm> + + + +namespace Geom +{ + +namespace detail +{ + +// this wrapper class is an helper to make up a curve portion and access it +// in an homogeneous way +template< typename Curve01T > +class CurvePortion +{ + public: + CurvePortion(const Curve & curve, double from, double to) + : m_curve_ptr(curve.portion(from, to)) + { + } + + Curve01T & get_curve() + { + return *( static_cast<Curve01T*>(m_curve_ptr) ); + } + + ~CurvePortion() + { + if (m_curve_ptr != NULL) + delete m_curve_ptr; + } + + private: + Curve* m_curve_ptr; +}; + +template<> +class CurvePortion< D2<SBasis> > +{ + public: + CurvePortion< D2<SBasis> >(const D2<SBasis> & curve, double from, double to) + : m_curve(portion(curve, from, to)) + { + } + + D2<SBasis> & get_curve() + { + return m_curve; + } + + private: + D2<SBasis> m_curve; +}; + + +template< typename Curve01T, typename CurveT > +class distance_impl +{ + typedef Curve01T curveA_type; + typedef CurveT curveB_type; + // determine how near a distance sample and the value computed through + // the interpolated function have to be + double accuracy; + // determine the recursion limit + double adaptive_limit; + // pieces of the initial subdivision + unsigned int piecees; + // degree of the polynomial used to interpolate a piece + unsigned int piece_degree; + // number of coefficients = piece_degree + 1 + unsigned int piece_size; + unsigned int samples_per_piece; + // total initial samples + unsigned int N; + // a junction is a part of the previous or of the next piece + unsigned int samples_per_junction; + unsigned int samples_per_2junctions; + // number of distance samples used in the interpolation (in the general case) + unsigned int samples_per_interpolation; + + // distance between two consecutive parameters at which samples are evaluated + double step; + double half_step; + // length of the initial domain interval of a piece + double piece_step; + // length of the interval related to a junction + double junction_step; + // index of the first sample related to a piece + unsigned int interval_si; + // index of the last sample related to a piece + unsigned int interval_ei; + // index of the first sample to be evaluated for the current piece + unsigned int evaluation_si; + // index of the last sample to be evaluated for the current piece + unsigned int evaluation_ei; + // index of the first sample to be used for interpolating the current piece + unsigned int interpolation_si; + // index of the last sample to be used for interpolating the current piece + unsigned int interpolation_ei; + // number of total samples to be used for interpolating the current piece + // this is equal to samples_per_interpolation except for the first and last + // piece + unsigned int interpolation_samples; + // parameter value for the first sample related to the current piece + double interval_st; + // interval_st + piece_step + double interval_et; + // curve piece start t + double portion_st; + // curve piece end t + double portion_et; + + unsigned int rec_pieces; + unsigned int rec_N; + unsigned int shared_si; + unsigned int shared_ei; + double rec_step; + double rec_half_step; + double rec_piece_step; + double rec_piece_2steps; + unsigned int rec_total_samples; + + + void init() + { + piece_degree = 3; + piece_size = piece_degree + 1; + samples_per_piece = 4; + N = piecees * samples_per_piece; + samples_per_junction = 2; + samples_per_2junctions = 2*samples_per_junction; + samples_per_interpolation + = samples_per_piece + samples_per_2junctions; + step = 1.0 / N; + half_step = step / 2; + piece_step = samples_per_piece * step; + junction_step = samples_per_junction * step; + interval_si = samples_per_junction; + interval_ei = interval_si + samples_per_piece; + portion_st = (double)(samples_per_junction) / samples_per_interpolation; + portion_et = portion_st + + (double)(samples_per_piece) / samples_per_interpolation; + + // recursive routine parameters + rec_pieces = 2; + rec_N = rec_pieces * samples_per_piece; + rec_total_samples = 2 * samples_per_piece + 1; + shared_si = samples_per_piece - samples_per_junction; + shared_ei = samples_per_piece + samples_per_junction; + rec_step = 1.0 / rec_N; + rec_half_step = rec_step / 2; + rec_piece_step = samples_per_piece * rec_step; + rec_piece_2steps = 2 * rec_piece_step; + } + + bool check_accuracy( SBasis const& piece, + NL::Vector const& sample_distances, + double step ) + { + double t = 0; + for (unsigned int i = 0; i < sample_distances.size(); ++i) + { + if ( !are_near(piece(t), sample_distances[i], accuracy) ) + { + return false; + } + t += step; + } + return true; + } + + + void append( Piecewise<SBasis> & pwc, + Piecewise<SBasis> const& spwc, + double interval_st, + double interval_length ) + { + double cut; + for (unsigned int i = 0; i < spwc.size(); ++i) + { + cut = interval_st + spwc.cuts[i+1] * interval_length; + pwc.push(spwc.segs[i], cut); + } + } + + void init_power_matrix(NL::Matrix & power_matrix) + { + double t = 0; + double u0, u1, s; + unsigned int half_rows = power_matrix.rows() / 2; + unsigned int n = power_matrix.rows() - 1; + for (unsigned int i0 = 0, i1 = n; i0 < half_rows; ++i0, --i1) + { + u0 = 1-t; + u1 = t; + s = u0 * u1; + for (unsigned int j = 0; j < piece_size; j+=2) + { + power_matrix(i0, j) = u0; + power_matrix(i0, j+1) = u1; + power_matrix(i1, j) = u1; + power_matrix(i1, j+1) = u0; + u0 *= s; + u1 *= s; + } + t += rec_step; + } + // t = 1/2 + assert( are_near(t, 0.5) ); + u1 = 1/2.0; + s = 1/4.0; + for (unsigned int j = 0; j < piece_size; j+=2) + { + power_matrix(half_rows, j) = u1; + power_matrix(half_rows, j+1) = u1; + u1 *= s; + } + } + + void interpolate( SBasis & piece, + NL::Matrix & psdinv_matrix, + NL::Vector & sample_distances, + double interpolation_si, double interpolation_samples, + double _portion_st, double _portion_et ) + { + piece.resize(2); + + NL::VectorView v( sample_distances, + interpolation_samples, + interpolation_si ); + NL::Vector coeff = psdinv_matrix * v; + for (unsigned int i = 0, k = 0; i < piece_size; i+=2, ++k) + { + piece[k][0] = coeff[i]; + piece[k][1] = coeff[i+1]; + } + piece = portion(piece, _portion_st, _portion_et); + } + + void evaluate_samples( curveA_type const& A, + curveB_type const& B, + NL::Vector & sample_distances, + double& t ) + { + Point At; + double nptime; + for (unsigned int i = evaluation_si; i < evaluation_ei; ++i) + { + At = A(t); + nptime = nearest_time(At, B); + sample_distances[i] = distance(At, B(nptime)); + t += step; + } + } + + void evaluate_piece_rec( Piecewise<SBasis> & pwc, + curveA_type const& A, + curveB_type const& B, + NL::Matrix & psdinv_matrix, + NL::Matrix & fpi_matrix, + NL::Matrix & lpi_matrix, + NL::Vector & curr_vector, + NL::Vector & sample_distances, + bool adaptive, + double _interpolation_si, + double _interpolation_ei, + double _interval_st, + double _interval_et, + double half_real_step ) + { + SBasis piece; + double _interpolation_samples = _interpolation_ei - _interpolation_si; + interpolate( piece, psdinv_matrix, curr_vector, + _interpolation_si, _interpolation_samples, + _interval_st, _interval_et ); + if (adaptive) + { + bool good + = check_accuracy( piece, sample_distances, rec_step ); + if (!good) + { + Piecewise<SBasis> spwc; + CurvePortion<curveA_type> cp(A, _interval_st, _interval_et); + evaluate_rec( spwc, + cp.get_curve(), + B, + fpi_matrix, + lpi_matrix, + sample_distances, + half_real_step ); + append(pwc, spwc, _interval_st, rec_piece_step); + } + else + { + pwc.push(piece, _interval_et); + } + } + else + { + pwc.push(piece, _interval_et); + } + } + + + // recursive routine: if the interpolated piece is accurate enough + // it's returned in the out-parameter pwc, otherwise the computation of + // two new piecees is performed using half of the current step so the + // number of samples per piece is always the same, while the interpolation + // of one piece is split into the computation of two new piecees when + // needed. + void evaluate_rec( Piecewise<SBasis> & pwc, + curveA_type const& A, + curveB_type const& B, + NL::Matrix & fpi_matrix, + NL::Matrix & lpi_matrix, + NL::Vector & sample_distances, + double real_step ) + { + const double half_real_step = real_step / 2; + const bool adaptive = !(real_step < adaptive_limit); + static const unsigned int middle_sample_index = samples_per_piece + 1; + + pwc.clear(); + pwc.push_cut(0); + // sample_distances used to check accuracy and for the interpolation + // of the two sub-pieces when needed + NL::Vector sample_distances_1(rec_total_samples); + NL::Vector sample_distances_2(rec_total_samples); + + // view of even indexes of sample_distances_1 + NL::VectorView + sd1_view_0(sample_distances_1, middle_sample_index, 0, 2); + // view of even indexes of sample_distances_2 + NL::VectorView + sd2_view_0(sample_distances_2, middle_sample_index, 0, 2); + // view of first half (+ 1) of sample_distances + NL::VectorView + sd_view_1(sample_distances, middle_sample_index, 0); + // view of second half of sample_distances + NL::VectorView + sd_view_2(sample_distances, middle_sample_index, samples_per_piece); + + sd1_view_0 = sd_view_1; + sd2_view_0 = sd_view_2; + + // if we have to check accuracy and go on with recursion + // we need to compute the distance samples of middle points + // of all current samples, because the new step is half of + // the current one + if (adaptive) + { + Point At; + double nptime; + double t = rec_half_step; + for (unsigned int i = 1; i < sample_distances.size(); i+=2) + { + At = A(t); + nptime = nearest_time(At, B); + sample_distances_1[i] = distance(At, B(nptime)); + At = A(t + rec_piece_step); + nptime = nearest_time(At, B); + sample_distances_2[i] = distance(At, B(nptime)); + t += rec_step; + } + } + + // first piece + evaluate_piece_rec( pwc, A, B, + fpi_matrix, + fpi_matrix, + lpi_matrix, + sample_distances, + sample_distances_1, + adaptive, + 0, // interpolation_si + shared_ei, // interpolation_ei + 0, // portion_st + rec_piece_step, // portion_et + half_real_step ); + + // copy back junction parts because + // the interpolate routine modifies them + for ( unsigned int i = 0, j = samples_per_piece - 1; + i < samples_per_junction; + ++i, --j ) + { + sd_view_1[j] = sd1_view_0[j]; + sd_view_2[i] = sd2_view_0[i]; + } + + + // last piece + evaluate_piece_rec( pwc, A, B, + lpi_matrix, + fpi_matrix, + lpi_matrix, + sample_distances, + sample_distances_2, + adaptive, + shared_si, // interpolation_si + rec_total_samples, // interpolation_ei + rec_piece_step, // portion_st + rec_piece_2steps, // portion_et + half_real_step ); + } + + + void evaluate_piece( Piecewise<SBasis> & pwc, + curveA_type const& A, + curveB_type const& B, + NL::Matrix & psdinv_matrix, + NL::Matrix & fpi_matrix, + NL::Matrix & lpi_matrix, + NL::Vector & curr_vector, + NL::Vector & sample_distances, + NL::Vector & end_junction, + NL::VectorView & start_junction_view, + NL::VectorView & end_junction_view, + double & t ) + { + //static size_t index = 0; + //std::cerr << "index = " << index++ << std::endl; + bool good; + SBasis piece; + Piecewise<SBasis> spwc; + interval_et += piece_step; + //std::cerr << "interval: " << interval_st << ", " << interval_et << std::endl; + //std::cerr << "interpolation range: " << interpolation_si << ", " << interpolation_ei << std::endl; + //std::cerr << "interpolation samples = " << interpolation_samples << std::endl; + evaluate_samples( A, B, curr_vector, t ); + //std::cerr << "current vector: " << curr_vector << std::endl; + for ( unsigned int i = 0, k = interval_si; + i < sample_distances.size(); + i+=2, ++k ) + { + sample_distances[i] = curr_vector[k]; + } + Point At; + double nptime; + double tt = interval_st + half_step; + for (unsigned int i = 1; i < sample_distances.size(); i+=2) + { + At = A(tt); + nptime = nearest_time(At, B); + sample_distances[i] = distance(At, B(nptime)); + tt += step; + } + //std::cerr << "sample_distances: " << sample_distances << std::endl; + end_junction = end_junction_view; + interpolate( piece, psdinv_matrix, curr_vector, + interpolation_si, interpolation_samples, + portion_st, portion_et ); + good = check_accuracy( piece, sample_distances, rec_step ); + //std::cerr << "good: " << good << std::endl; + //good = true; + if (!good) + { + CurvePortion<curveA_type> cp(A, interval_st, interval_et); + evaluate_rec( spwc, + cp.get_curve(), + B, + fpi_matrix, + lpi_matrix, + sample_distances, + half_step ); + append(pwc, spwc, interval_st, piece_step); + } + else + { + pwc.push(piece, interval_et); + } + interval_st = interval_et; + for (unsigned int i = 0; i < samples_per_junction; ++i) + { + curr_vector[i] = start_junction_view[i]; + curr_vector[samples_per_junction + i] = end_junction[i]; + } + } + + public: + void evaluate( Piecewise<SBasis> & pwc, + curveA_type const& A, + curveB_type const& B, + unsigned int _piecees ) + { + piecees = _piecees; + init(); + assert( !(piecees & 1) ); + assert( !(piece_size & 1) ); + assert( rec_total_samples & 1); + pwc.clear(); + pwc.push_cut(0); + NL::Matrix power_matrix(rec_total_samples, piece_size); + init_power_matrix(power_matrix); + + NL::MatrixView rec_fmv( power_matrix, + 0, 0, + shared_ei, piece_size ); + NL::Matrix rec_fpim = NL::pseudo_inverse(rec_fmv); + NL::MatrixView rec_lmv( power_matrix, + shared_si, 0, + rec_total_samples - shared_si, piece_size ); + NL::Matrix rec_lpim = NL::pseudo_inverse(rec_lmv); + + + + NL::Vector curr_vector(samples_per_interpolation); + NL::Vector sample_distances(rec_total_samples); + NL::Vector end_junction(samples_per_junction); + NL::VectorView start_junction_view( + sample_distances, + samples_per_junction, + rec_total_samples - 1 - samples_per_2junctions, + 2 ); + NL::VectorView end_junction_view( + curr_vector, + samples_per_junction, + samples_per_junction + samples_per_piece ); + + double t = 0; + + // first piece + evaluation_si = interval_si; + evaluation_ei = samples_per_interpolation; + interpolation_si = evaluation_si; + interpolation_ei = evaluation_ei; + interpolation_samples = interpolation_ei - interpolation_si; + interval_st = 0; + interval_et = 0; + NL::MatrixView fmv( power_matrix, + interpolation_si, 0, + interpolation_samples, piece_size ); + NL::Matrix fpim = NL::pseudo_inverse(fmv); + + evaluate_piece( pwc, A, B, fpim, + rec_fpim, rec_lpim, + curr_vector, sample_distances, end_junction, + start_junction_view, end_junction_view, + t ); + + // general case + evaluation_si = interval_si + samples_per_junction; + evaluation_ei = samples_per_interpolation; + interpolation_si = 0; + interpolation_ei = evaluation_ei; + interpolation_samples = interpolation_ei - interpolation_si; + NL::MatrixView gmv( power_matrix, + interpolation_si, 0, + interpolation_samples, piece_size ); + NL::Matrix gpim = NL::pseudo_inverse(gmv); + + for ( unsigned int piece_index = 1; + piece_index < piecees - 1; + ++piece_index ) + { + evaluate_piece( pwc, A, B, gpim, + rec_fpim, rec_lpim, + curr_vector, sample_distances, end_junction, + start_junction_view, end_junction_view, + t ); + } + + // last piece + evaluation_si = interval_si + samples_per_junction; + evaluation_ei = interval_ei + 1; + interpolation_si = 0; + interpolation_ei = evaluation_ei; + interpolation_samples = interpolation_ei -interpolation_si; + NL::MatrixView lmv( power_matrix, + interpolation_si, 0, + interpolation_samples, piece_size ); + NL::Matrix lpim = NL::pseudo_inverse(lmv); + + evaluate_piece( pwc, A, B, lpim, + rec_fpim, rec_lpim, + curr_vector, sample_distances, end_junction, + start_junction_view, end_junction_view, + t ); + } + + distance_impl() + : accuracy(1e-3), + adaptive_limit(1e-5) + {} + + void set_accuracy(double _accuracy) + { + accuracy = _accuracy; + } + + void set_adaptive_limit(double _adaptive_limit) + { + adaptive_limit = _adaptive_limit; + } + +}; // end class distance_impl + +} // end namespace detail + +template < typename Curve01T, typename CurveT > +inline +Piecewise<SBasis> +distance( Curve01T const& A, + CurveT const& B, + unsigned int pieces = 40, + double adaptive_limit = 1e-5, + double accuracy = 1e-3 ) +{ + + detail::distance_impl<Curve01T, CurveT> dist; + dist.set_accuracy(accuracy); + dist.set_adaptive_limit(adaptive_limit); + Piecewise<SBasis> pwc; + dist.evaluate(pwc, A, B, pieces); + return pwc; +} + +template < typename CurveT > +inline +Piecewise<SBasis> +distance( Piecewise< D2<SBasis> > const& A, + CurveT const& B, + unsigned int pieces = 40, + double adaptive_limit = 1e-5, + double accuracy = 1e-3 ) +{ + Piecewise<SBasis> result; + Piecewise<SBasis> pwc; + for (unsigned int i = 0; i < A.size(); ++i) + { + pwc = distance(A[i], B, pieces, adaptive_limit, accuracy); + pwc.scaleDomain(A.cuts[i+1] - A.cuts[i]); + pwc.offsetDomain(A.cuts[i]); + result.concat(pwc); + } + return result; +} + +template < typename CurveT > +inline +Piecewise<SBasis> +distance( Path const& A, + CurveT const& B, + unsigned int pieces = 40, + double adaptive_limit = 1e-5, + double accuracy = 1e-3 ) +{ + Piecewise<SBasis> result; + Piecewise<SBasis> pwc; + unsigned int sz = A.size(); + if (A.closed()) ++sz; + for (unsigned int i = 0; i < sz; ++i) + { + pwc = distance(A[i], B, pieces, adaptive_limit, accuracy); + pwc.offsetDomain(i); + result.concat(pwc); + } + return result; +} + + +template < typename Curve01T, typename CurveT > +unsigned int dist_test( Piecewise<SBasis> const& pwc, + Curve01T const& A, + CurveT const& B, + double step ) +{ + std::cerr << "======= inside dist test =======" << std::endl; + unsigned int total_checked_values = 0; + unsigned int total_error = 0; + double nptime, sample_distance; + Point At; + for (double t = 0; t <= 1; t += step) + { + At = A(t); + nptime = nearest_time(At, B); + sample_distance = distance(At, B(nptime)); + if ( !are_near(pwc(t), sample_distance, 0.001) ) + { + ++total_error; + std::cerr << "error at t: " << t << std::endl; + } + ++total_checked_values; + } + std::cerr << " total checked values : " << total_checked_values << std::endl; + std::cerr << " total error : " << total_error << std::endl; + return total_error; +} + +} // end namespace Geom + + +using namespace Geom; + +class DCCToy : public Toy +{ + private: + void draw( cairo_t *cr, std::ostringstream *notify, + int width, int height, bool save, std::ostringstream *timer_stream) override + { + Point ulc(width - 300, height - 60 ); + toggles[0].bounds = Rect(ulc, ulc + Point(160,25) ); + toggles[1].bounds = Rect(ulc + Point(0,30), ulc + Point(160,55) ); + sliders[0].geometry(ulc - Point(450,0), 400); + if (toggle0_status != toggles[0].on) + { + toggle0_status = toggles[0].on; + using std::swap; + swap(sliders[0], sliders[1]); + } + + cairo_set_source_rgba(cr, 0.3, 0.3, 0.3, 1.0); + cairo_set_line_width (cr, 0.3); + + if (choice == 0) + { + A = single_curve_psh.asBezier(); + cairo_d2_sb(cr, A); + } + else if (choice == 1) + { + pA.clear(); + for (unsigned int k = 0; k < path_curves; ++k) + { + PointSetHandle psh; + psh.pts.resize(path_handles_per_curve); + for (unsigned int h = 0; h < path_handles_per_curve; ++h) + { + unsigned int kk = k * (path_handles_per_curve-1) + h; + psh.pts[h] = path_psh.pts[kk]; + } + pA.append(psh.asBezier()); + } + cairo_path(cr, pA); + } + else if (choice == 2) + { + for (unsigned int i = 0; i < pwc_curves; ++i) + { + pwA.segs[i] = pwc_psh[i].asBezier(); + } + cairo_pw_d2_sb(cr, pwA); + } + + D2<SBasis> B = B_psh.asBezier(); + cairo_d2_sb(cr, B); + + double t = sliders[0].value(); + Piecewise<SBasis> d; + unsigned int total_error = 0; + Point cursor; + + if (!toggles[0].on) + { + if (choice == 0) + { + cursor = A(t); + d = distance(A, B, 40); + // uncomment following lines to view errors in computing the distance + //total_error = dist_test(d, A, B, 0.0004); + } + else if (choice == 1) + { + cursor = pA(t); + d = distance(pA, B, 40); + // uncomment following lines to view errors in computing the distance + //total_error = dist_test(d, pA, B, 0.0004); + } + else if (choice == 2) + { + cursor = pwA(t); + d = distance(pwA, B, 40); + // uncomment following lines to view errors in computing the distance + //total_error = dist_test(d, pwA, B, 0.0004); + } + + double nptB = nearest_time(cursor, B); + draw_circ(cr, cursor); + cairo_move_to(cr, cursor); + cairo_line_to(cr, B(nptB)); + cairo_stroke(cr); + } + else + { + Point np(0,0); + cursor = B(t); + if (choice == 0) + { + double nptA = nearest_time(cursor, A); + np = A(nptA); + d = distance(B, A, 40); + // uncomment following lines to view errors in computing the distance + //total_error = dist_test(d, B, A, 0.0004); + } + else if (choice == 1) + { + double nptA = nearest_time(cursor, pA); + np = pA(nptA); + d = distance(B, pA, 40); + // uncomment following lines to view errors in computing the distance + //total_error = dist_test(d, B, pA, 0.0004); + } + draw_circ(cr, cursor); + cairo_move_to(cr, cursor); + cairo_line_to(cr, np); + cairo_stroke(cr); + } + + if (total_error != 0) + *notify << "total error: " << total_error << " "; + + + // draw distance function + Piecewise< D2<SBasis> > pwc; + pwc.cuts = d.cuts; + pwc.segs.resize(d.size()); + D2<SBasis> piece; + double domain_length = 800 / d.domain().extent(); + for ( unsigned int i = 0; i < d.size(); ++i ) + { + piece[X] = SBasis(Linear(20,20) + + domain_length * Linear(d.cuts[i], d.cuts[i+1])); + piece[Y] = 3 * d.segs[i]; + pwc.segs[i] = piece; + } + cairo_set_source_rgb(cr, 0.7,0,0); + cairo_pw_d2_sb(cr, pwc); + *notify << "total cuts: " << pwc.cuts.size(); + if (toggles[1].on) + { + for (unsigned int i = 0; i < pwc.cuts.size(); ++i) + { + draw_handle(cr, pwc(pwc.cuts[i])); + } + } + else + { + draw_handle(cr, pwc(0.0)); + draw_handle(cr, pwc(0.25)); + draw_handle(cr, pwc(0.5)); + draw_handle(cr, pwc(0.75)); + draw_handle(cr, pwc(1)); + } + draw_circ(cr, pwc(t)); + cairo_stroke(cr); + Toy::draw(cr, notify, width, height, save,timer_stream); + } + + + public: + DCCToy() + { + toggle0_status = false; + choice = 0; + + single_curve_handles = 6; + path_curves = 3; + path_handles_per_curve = 4; + path_total_handles = path_curves * (path_handles_per_curve - 1) + 1; + pwc_curves = 3; + pwc_handles_per_curve = 4; + pwc_total_handles = pwc_curves * pwc_handles_per_curve; + B_handles = 4; + + if (choice == 0) + { + for (unsigned int i = 0; i < single_curve_handles; ++i) + { + single_curve_psh.push_back(700*uniform(), 500*uniform()); + } + handles.push_back(&single_curve_psh); + sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t"); + } + else if (choice == 1) + { + for (unsigned int i = 0; i < path_total_handles; ++i) + { + path_psh.push_back(700*uniform(), 500*uniform()); + } + handles.push_back(&path_psh); + sliders.emplace_back(0.0, path_curves, 0.0, 0.0, "t"); + } + else if (choice == 2) + { + pwc_psh.resize(pwc_curves); + pwA.segs.resize(pwc_curves); + pwA.cuts.resize(pwc_curves+1); + pwA.cuts[0] = 0; + double length = 1.0 / pwc_curves; + for (unsigned int i = 0; i < pwc_curves; ++i) + { + for (unsigned int j = 0; j < pwc_handles_per_curve; ++j) + { + pwc_psh[i].push_back(700*uniform(), 500*uniform()); + } + handles.push_back(&(pwc_psh[i])); + pwA.cuts[i+1] = pwA.cuts[i] + length; + } + sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t"); + } + + for (unsigned int i = 0; i < B_handles; ++i) + { + B_psh.push_back(700*uniform(), 500*uniform()); + } + handles.push_back(&B_psh); + sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t"); + + toggles.emplace_back("d(A,B) <-> d(B,A)", false); + toggles.emplace_back("Show/Hide cuts", false); + + handles.push_back(&(toggles[0])); + handles.push_back(&(toggles[1])); + handles.push_back(&(sliders[0])); + + } + + private: + bool toggle0_status; + unsigned int choice; + unsigned int single_curve_handles, B_handles; + unsigned int path_curves, path_handles_per_curve, path_total_handles; + unsigned int pwc_curves, pwc_handles_per_curve, pwc_total_handles; + PointSetHandle single_curve_psh; + PointSetHandle path_psh; + std::vector<PointSetHandle> pwc_psh; + PointSetHandle B_psh; + std::vector<Toggle> toggles; + std::vector<Slider> sliders; + D2<SBasis> A; + Path pA; + Piecewise< D2<SBasis> > pwA; +}; + + + + +int main(int argc, char **argv) +{ + init( argc, argv, new DCCToy(), 840, 600 ); + return 0; +} + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |