summaryrefslogtreecommitdiffstats
path: root/src/toys/curve-curve-distance.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/toys/curve-curve-distance.cpp')
-rw-r--r--src/toys/curve-curve-distance.cpp1000
1 files changed, 1000 insertions, 0 deletions
diff --git a/src/toys/curve-curve-distance.cpp b/src/toys/curve-curve-distance.cpp
new file mode 100644
index 0000000..bca0f27
--- /dev/null
+++ b/src/toys/curve-curve-distance.cpp
@@ -0,0 +1,1000 @@
+/*
+ * curve-curve distance
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ *
+ * Copyright 2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#include <2geom/d2.h>
+#include <2geom/sbasis.h>
+#include <2geom/path.h>
+#include <2geom/angle.h>
+#include <2geom/bezier-to-sbasis.h>
+#include <2geom/sbasis-geometric.h>
+#include <2geom/piecewise.h>
+
+#include <toys/path-cairo.h>
+#include <toys/toy-framework-2.h>
+
+#include <2geom/nearest-time.h>
+#include <2geom/numeric/linear_system.h>
+
+#include <algorithm>
+
+
+
+namespace Geom
+{
+
+namespace detail
+{
+
+// this wrapper class is an helper to make up a curve portion and access it
+// in an homogeneous way
+template< typename Curve01T >
+class CurvePortion
+{
+ public:
+ CurvePortion(const Curve & curve, double from, double to)
+ : m_curve_ptr(curve.portion(from, to))
+ {
+ }
+
+ Curve01T & get_curve()
+ {
+ return *( static_cast<Curve01T*>(m_curve_ptr) );
+ }
+
+ ~CurvePortion()
+ {
+ if (m_curve_ptr != NULL)
+ delete m_curve_ptr;
+ }
+
+ private:
+ Curve* m_curve_ptr;
+};
+
+template<>
+class CurvePortion< D2<SBasis> >
+{
+ public:
+ CurvePortion< D2<SBasis> >(const D2<SBasis> & curve, double from, double to)
+ : m_curve(portion(curve, from, to))
+ {
+ }
+
+ D2<SBasis> & get_curve()
+ {
+ return m_curve;
+ }
+
+ private:
+ D2<SBasis> m_curve;
+};
+
+
+template< typename Curve01T, typename CurveT >
+class distance_impl
+{
+ typedef Curve01T curveA_type;
+ typedef CurveT curveB_type;
+ // determine how near a distance sample and the value computed through
+ // the interpolated function have to be
+ double accuracy;
+ // determine the recursion limit
+ double adaptive_limit;
+ // pieces of the initial subdivision
+ unsigned int piecees;
+ // degree of the polynomial used to interpolate a piece
+ unsigned int piece_degree;
+ // number of coefficients = piece_degree + 1
+ unsigned int piece_size;
+ unsigned int samples_per_piece;
+ // total initial samples
+ unsigned int N;
+ // a junction is a part of the previous or of the next piece
+ unsigned int samples_per_junction;
+ unsigned int samples_per_2junctions;
+ // number of distance samples used in the interpolation (in the general case)
+ unsigned int samples_per_interpolation;
+
+ // distance between two consecutive parameters at which samples are evaluated
+ double step;
+ double half_step;
+ // length of the initial domain interval of a piece
+ double piece_step;
+ // length of the interval related to a junction
+ double junction_step;
+ // index of the first sample related to a piece
+ unsigned int interval_si;
+ // index of the last sample related to a piece
+ unsigned int interval_ei;
+ // index of the first sample to be evaluated for the current piece
+ unsigned int evaluation_si;
+ // index of the last sample to be evaluated for the current piece
+ unsigned int evaluation_ei;
+ // index of the first sample to be used for interpolating the current piece
+ unsigned int interpolation_si;
+ // index of the last sample to be used for interpolating the current piece
+ unsigned int interpolation_ei;
+ // number of total samples to be used for interpolating the current piece
+ // this is equal to samples_per_interpolation except for the first and last
+ // piece
+ unsigned int interpolation_samples;
+ // parameter value for the first sample related to the current piece
+ double interval_st;
+ // interval_st + piece_step
+ double interval_et;
+ // curve piece start t
+ double portion_st;
+ // curve piece end t
+ double portion_et;
+
+ unsigned int rec_pieces;
+ unsigned int rec_N;
+ unsigned int shared_si;
+ unsigned int shared_ei;
+ double rec_step;
+ double rec_half_step;
+ double rec_piece_step;
+ double rec_piece_2steps;
+ unsigned int rec_total_samples;
+
+
+ void init()
+ {
+ piece_degree = 3;
+ piece_size = piece_degree + 1;
+ samples_per_piece = 4;
+ N = piecees * samples_per_piece;
+ samples_per_junction = 2;
+ samples_per_2junctions = 2*samples_per_junction;
+ samples_per_interpolation
+ = samples_per_piece + samples_per_2junctions;
+ step = 1.0 / N;
+ half_step = step / 2;
+ piece_step = samples_per_piece * step;
+ junction_step = samples_per_junction * step;
+ interval_si = samples_per_junction;
+ interval_ei = interval_si + samples_per_piece;
+ portion_st = (double)(samples_per_junction) / samples_per_interpolation;
+ portion_et = portion_st
+ + (double)(samples_per_piece) / samples_per_interpolation;
+
+ // recursive routine parameters
+ rec_pieces = 2;
+ rec_N = rec_pieces * samples_per_piece;
+ rec_total_samples = 2 * samples_per_piece + 1;
+ shared_si = samples_per_piece - samples_per_junction;
+ shared_ei = samples_per_piece + samples_per_junction;
+ rec_step = 1.0 / rec_N;
+ rec_half_step = rec_step / 2;
+ rec_piece_step = samples_per_piece * rec_step;
+ rec_piece_2steps = 2 * rec_piece_step;
+ }
+
+ bool check_accuracy( SBasis const& piece,
+ NL::Vector const& sample_distances,
+ double step )
+ {
+ double t = 0;
+ for (unsigned int i = 0; i < sample_distances.size(); ++i)
+ {
+ if ( !are_near(piece(t), sample_distances[i], accuracy) )
+ {
+ return false;
+ }
+ t += step;
+ }
+ return true;
+ }
+
+
+ void append( Piecewise<SBasis> & pwc,
+ Piecewise<SBasis> const& spwc,
+ double interval_st,
+ double interval_length )
+ {
+ double cut;
+ for (unsigned int i = 0; i < spwc.size(); ++i)
+ {
+ cut = interval_st + spwc.cuts[i+1] * interval_length;
+ pwc.push(spwc.segs[i], cut);
+ }
+ }
+
+ void init_power_matrix(NL::Matrix & power_matrix)
+ {
+ double t = 0;
+ double u0, u1, s;
+ unsigned int half_rows = power_matrix.rows() / 2;
+ unsigned int n = power_matrix.rows() - 1;
+ for (unsigned int i0 = 0, i1 = n; i0 < half_rows; ++i0, --i1)
+ {
+ u0 = 1-t;
+ u1 = t;
+ s = u0 * u1;
+ for (unsigned int j = 0; j < piece_size; j+=2)
+ {
+ power_matrix(i0, j) = u0;
+ power_matrix(i0, j+1) = u1;
+ power_matrix(i1, j) = u1;
+ power_matrix(i1, j+1) = u0;
+ u0 *= s;
+ u1 *= s;
+ }
+ t += rec_step;
+ }
+ // t = 1/2
+ assert( are_near(t, 0.5) );
+ u1 = 1/2.0;
+ s = 1/4.0;
+ for (unsigned int j = 0; j < piece_size; j+=2)
+ {
+ power_matrix(half_rows, j) = u1;
+ power_matrix(half_rows, j+1) = u1;
+ u1 *= s;
+ }
+ }
+
+ void interpolate( SBasis & piece,
+ NL::Matrix & psdinv_matrix,
+ NL::Vector & sample_distances,
+ double interpolation_si, double interpolation_samples,
+ double _portion_st, double _portion_et )
+ {
+ piece.resize(2);
+
+ NL::VectorView v( sample_distances,
+ interpolation_samples,
+ interpolation_si );
+ NL::Vector coeff = psdinv_matrix * v;
+ for (unsigned int i = 0, k = 0; i < piece_size; i+=2, ++k)
+ {
+ piece[k][0] = coeff[i];
+ piece[k][1] = coeff[i+1];
+ }
+ piece = portion(piece, _portion_st, _portion_et);
+ }
+
+ void evaluate_samples( curveA_type const& A,
+ curveB_type const& B,
+ NL::Vector & sample_distances,
+ double& t )
+ {
+ Point At;
+ double nptime;
+ for (unsigned int i = evaluation_si; i < evaluation_ei; ++i)
+ {
+ At = A(t);
+ nptime = nearest_time(At, B);
+ sample_distances[i] = distance(At, B(nptime));
+ t += step;
+ }
+ }
+
+ void evaluate_piece_rec( Piecewise<SBasis> & pwc,
+ curveA_type const& A,
+ curveB_type const& B,
+ NL::Matrix & psdinv_matrix,
+ NL::Matrix & fpi_matrix,
+ NL::Matrix & lpi_matrix,
+ NL::Vector & curr_vector,
+ NL::Vector & sample_distances,
+ bool adaptive,
+ double _interpolation_si,
+ double _interpolation_ei,
+ double _interval_st,
+ double _interval_et,
+ double half_real_step )
+ {
+ SBasis piece;
+ double _interpolation_samples = _interpolation_ei - _interpolation_si;
+ interpolate( piece, psdinv_matrix, curr_vector,
+ _interpolation_si, _interpolation_samples,
+ _interval_st, _interval_et );
+ if (adaptive)
+ {
+ bool good
+ = check_accuracy( piece, sample_distances, rec_step );
+ if (!good)
+ {
+ Piecewise<SBasis> spwc;
+ CurvePortion<curveA_type> cp(A, _interval_st, _interval_et);
+ evaluate_rec( spwc,
+ cp.get_curve(),
+ B,
+ fpi_matrix,
+ lpi_matrix,
+ sample_distances,
+ half_real_step );
+ append(pwc, spwc, _interval_st, rec_piece_step);
+ }
+ else
+ {
+ pwc.push(piece, _interval_et);
+ }
+ }
+ else
+ {
+ pwc.push(piece, _interval_et);
+ }
+ }
+
+
+ // recursive routine: if the interpolated piece is accurate enough
+ // it's returned in the out-parameter pwc, otherwise the computation of
+ // two new piecees is performed using half of the current step so the
+ // number of samples per piece is always the same, while the interpolation
+ // of one piece is split into the computation of two new piecees when
+ // needed.
+ void evaluate_rec( Piecewise<SBasis> & pwc,
+ curveA_type const& A,
+ curveB_type const& B,
+ NL::Matrix & fpi_matrix,
+ NL::Matrix & lpi_matrix,
+ NL::Vector & sample_distances,
+ double real_step )
+ {
+ const double half_real_step = real_step / 2;
+ const bool adaptive = !(real_step < adaptive_limit);
+ static const unsigned int middle_sample_index = samples_per_piece + 1;
+
+ pwc.clear();
+ pwc.push_cut(0);
+ // sample_distances used to check accuracy and for the interpolation
+ // of the two sub-pieces when needed
+ NL::Vector sample_distances_1(rec_total_samples);
+ NL::Vector sample_distances_2(rec_total_samples);
+
+ // view of even indexes of sample_distances_1
+ NL::VectorView
+ sd1_view_0(sample_distances_1, middle_sample_index, 0, 2);
+ // view of even indexes of sample_distances_2
+ NL::VectorView
+ sd2_view_0(sample_distances_2, middle_sample_index, 0, 2);
+ // view of first half (+ 1) of sample_distances
+ NL::VectorView
+ sd_view_1(sample_distances, middle_sample_index, 0);
+ // view of second half of sample_distances
+ NL::VectorView
+ sd_view_2(sample_distances, middle_sample_index, samples_per_piece);
+
+ sd1_view_0 = sd_view_1;
+ sd2_view_0 = sd_view_2;
+
+ // if we have to check accuracy and go on with recursion
+ // we need to compute the distance samples of middle points
+ // of all current samples, because the new step is half of
+ // the current one
+ if (adaptive)
+ {
+ Point At;
+ double nptime;
+ double t = rec_half_step;
+ for (unsigned int i = 1; i < sample_distances.size(); i+=2)
+ {
+ At = A(t);
+ nptime = nearest_time(At, B);
+ sample_distances_1[i] = distance(At, B(nptime));
+ At = A(t + rec_piece_step);
+ nptime = nearest_time(At, B);
+ sample_distances_2[i] = distance(At, B(nptime));
+ t += rec_step;
+ }
+ }
+
+ // first piece
+ evaluate_piece_rec( pwc, A, B,
+ fpi_matrix,
+ fpi_matrix,
+ lpi_matrix,
+ sample_distances,
+ sample_distances_1,
+ adaptive,
+ 0, // interpolation_si
+ shared_ei, // interpolation_ei
+ 0, // portion_st
+ rec_piece_step, // portion_et
+ half_real_step );
+
+ // copy back junction parts because
+ // the interpolate routine modifies them
+ for ( unsigned int i = 0, j = samples_per_piece - 1;
+ i < samples_per_junction;
+ ++i, --j )
+ {
+ sd_view_1[j] = sd1_view_0[j];
+ sd_view_2[i] = sd2_view_0[i];
+ }
+
+
+ // last piece
+ evaluate_piece_rec( pwc, A, B,
+ lpi_matrix,
+ fpi_matrix,
+ lpi_matrix,
+ sample_distances,
+ sample_distances_2,
+ adaptive,
+ shared_si, // interpolation_si
+ rec_total_samples, // interpolation_ei
+ rec_piece_step, // portion_st
+ rec_piece_2steps, // portion_et
+ half_real_step );
+ }
+
+
+ void evaluate_piece( Piecewise<SBasis> & pwc,
+ curveA_type const& A,
+ curveB_type const& B,
+ NL::Matrix & psdinv_matrix,
+ NL::Matrix & fpi_matrix,
+ NL::Matrix & lpi_matrix,
+ NL::Vector & curr_vector,
+ NL::Vector & sample_distances,
+ NL::Vector & end_junction,
+ NL::VectorView & start_junction_view,
+ NL::VectorView & end_junction_view,
+ double & t )
+ {
+ //static size_t index = 0;
+ //std::cerr << "index = " << index++ << std::endl;
+ bool good;
+ SBasis piece;
+ Piecewise<SBasis> spwc;
+ interval_et += piece_step;
+ //std::cerr << "interval: " << interval_st << ", " << interval_et << std::endl;
+ //std::cerr << "interpolation range: " << interpolation_si << ", " << interpolation_ei << std::endl;
+ //std::cerr << "interpolation samples = " << interpolation_samples << std::endl;
+ evaluate_samples( A, B, curr_vector, t );
+ //std::cerr << "current vector: " << curr_vector << std::endl;
+ for ( unsigned int i = 0, k = interval_si;
+ i < sample_distances.size();
+ i+=2, ++k )
+ {
+ sample_distances[i] = curr_vector[k];
+ }
+ Point At;
+ double nptime;
+ double tt = interval_st + half_step;
+ for (unsigned int i = 1; i < sample_distances.size(); i+=2)
+ {
+ At = A(tt);
+ nptime = nearest_time(At, B);
+ sample_distances[i] = distance(At, B(nptime));
+ tt += step;
+ }
+ //std::cerr << "sample_distances: " << sample_distances << std::endl;
+ end_junction = end_junction_view;
+ interpolate( piece, psdinv_matrix, curr_vector,
+ interpolation_si, interpolation_samples,
+ portion_st, portion_et );
+ good = check_accuracy( piece, sample_distances, rec_step );
+ //std::cerr << "good: " << good << std::endl;
+ //good = true;
+ if (!good)
+ {
+ CurvePortion<curveA_type> cp(A, interval_st, interval_et);
+ evaluate_rec( spwc,
+ cp.get_curve(),
+ B,
+ fpi_matrix,
+ lpi_matrix,
+ sample_distances,
+ half_step );
+ append(pwc, spwc, interval_st, piece_step);
+ }
+ else
+ {
+ pwc.push(piece, interval_et);
+ }
+ interval_st = interval_et;
+ for (unsigned int i = 0; i < samples_per_junction; ++i)
+ {
+ curr_vector[i] = start_junction_view[i];
+ curr_vector[samples_per_junction + i] = end_junction[i];
+ }
+ }
+
+ public:
+ void evaluate( Piecewise<SBasis> & pwc,
+ curveA_type const& A,
+ curveB_type const& B,
+ unsigned int _piecees )
+ {
+ piecees = _piecees;
+ init();
+ assert( !(piecees & 1) );
+ assert( !(piece_size & 1) );
+ assert( rec_total_samples & 1);
+ pwc.clear();
+ pwc.push_cut(0);
+ NL::Matrix power_matrix(rec_total_samples, piece_size);
+ init_power_matrix(power_matrix);
+
+ NL::MatrixView rec_fmv( power_matrix,
+ 0, 0,
+ shared_ei, piece_size );
+ NL::Matrix rec_fpim = NL::pseudo_inverse(rec_fmv);
+ NL::MatrixView rec_lmv( power_matrix,
+ shared_si, 0,
+ rec_total_samples - shared_si, piece_size );
+ NL::Matrix rec_lpim = NL::pseudo_inverse(rec_lmv);
+
+
+
+ NL::Vector curr_vector(samples_per_interpolation);
+ NL::Vector sample_distances(rec_total_samples);
+ NL::Vector end_junction(samples_per_junction);
+ NL::VectorView start_junction_view(
+ sample_distances,
+ samples_per_junction,
+ rec_total_samples - 1 - samples_per_2junctions,
+ 2 );
+ NL::VectorView end_junction_view(
+ curr_vector,
+ samples_per_junction,
+ samples_per_junction + samples_per_piece );
+
+ double t = 0;
+
+ // first piece
+ evaluation_si = interval_si;
+ evaluation_ei = samples_per_interpolation;
+ interpolation_si = evaluation_si;
+ interpolation_ei = evaluation_ei;
+ interpolation_samples = interpolation_ei - interpolation_si;
+ interval_st = 0;
+ interval_et = 0;
+ NL::MatrixView fmv( power_matrix,
+ interpolation_si, 0,
+ interpolation_samples, piece_size );
+ NL::Matrix fpim = NL::pseudo_inverse(fmv);
+
+ evaluate_piece( pwc, A, B, fpim,
+ rec_fpim, rec_lpim,
+ curr_vector, sample_distances, end_junction,
+ start_junction_view, end_junction_view,
+ t );
+
+ // general case
+ evaluation_si = interval_si + samples_per_junction;
+ evaluation_ei = samples_per_interpolation;
+ interpolation_si = 0;
+ interpolation_ei = evaluation_ei;
+ interpolation_samples = interpolation_ei - interpolation_si;
+ NL::MatrixView gmv( power_matrix,
+ interpolation_si, 0,
+ interpolation_samples, piece_size );
+ NL::Matrix gpim = NL::pseudo_inverse(gmv);
+
+ for ( unsigned int piece_index = 1;
+ piece_index < piecees - 1;
+ ++piece_index )
+ {
+ evaluate_piece( pwc, A, B, gpim,
+ rec_fpim, rec_lpim,
+ curr_vector, sample_distances, end_junction,
+ start_junction_view, end_junction_view,
+ t );
+ }
+
+ // last piece
+ evaluation_si = interval_si + samples_per_junction;
+ evaluation_ei = interval_ei + 1;
+ interpolation_si = 0;
+ interpolation_ei = evaluation_ei;
+ interpolation_samples = interpolation_ei -interpolation_si;
+ NL::MatrixView lmv( power_matrix,
+ interpolation_si, 0,
+ interpolation_samples, piece_size );
+ NL::Matrix lpim = NL::pseudo_inverse(lmv);
+
+ evaluate_piece( pwc, A, B, lpim,
+ rec_fpim, rec_lpim,
+ curr_vector, sample_distances, end_junction,
+ start_junction_view, end_junction_view,
+ t );
+ }
+
+ distance_impl()
+ : accuracy(1e-3),
+ adaptive_limit(1e-5)
+ {}
+
+ void set_accuracy(double _accuracy)
+ {
+ accuracy = _accuracy;
+ }
+
+ void set_adaptive_limit(double _adaptive_limit)
+ {
+ adaptive_limit = _adaptive_limit;
+ }
+
+}; // end class distance_impl
+
+} // end namespace detail
+
+template < typename Curve01T, typename CurveT >
+inline
+Piecewise<SBasis>
+distance( Curve01T const& A,
+ CurveT const& B,
+ unsigned int pieces = 40,
+ double adaptive_limit = 1e-5,
+ double accuracy = 1e-3 )
+{
+
+ detail::distance_impl<Curve01T, CurveT> dist;
+ dist.set_accuracy(accuracy);
+ dist.set_adaptive_limit(adaptive_limit);
+ Piecewise<SBasis> pwc;
+ dist.evaluate(pwc, A, B, pieces);
+ return pwc;
+}
+
+template < typename CurveT >
+inline
+Piecewise<SBasis>
+distance( Piecewise< D2<SBasis> > const& A,
+ CurveT const& B,
+ unsigned int pieces = 40,
+ double adaptive_limit = 1e-5,
+ double accuracy = 1e-3 )
+{
+ Piecewise<SBasis> result;
+ Piecewise<SBasis> pwc;
+ for (unsigned int i = 0; i < A.size(); ++i)
+ {
+ pwc = distance(A[i], B, pieces, adaptive_limit, accuracy);
+ pwc.scaleDomain(A.cuts[i+1] - A.cuts[i]);
+ pwc.offsetDomain(A.cuts[i]);
+ result.concat(pwc);
+ }
+ return result;
+}
+
+template < typename CurveT >
+inline
+Piecewise<SBasis>
+distance( Path const& A,
+ CurveT const& B,
+ unsigned int pieces = 40,
+ double adaptive_limit = 1e-5,
+ double accuracy = 1e-3 )
+{
+ Piecewise<SBasis> result;
+ Piecewise<SBasis> pwc;
+ unsigned int sz = A.size();
+ if (A.closed()) ++sz;
+ for (unsigned int i = 0; i < sz; ++i)
+ {
+ pwc = distance(A[i], B, pieces, adaptive_limit, accuracy);
+ pwc.offsetDomain(i);
+ result.concat(pwc);
+ }
+ return result;
+}
+
+
+template < typename Curve01T, typename CurveT >
+unsigned int dist_test( Piecewise<SBasis> const& pwc,
+ Curve01T const& A,
+ CurveT const& B,
+ double step )
+{
+ std::cerr << "======= inside dist test =======" << std::endl;
+ unsigned int total_checked_values = 0;
+ unsigned int total_error = 0;
+ double nptime, sample_distance;
+ Point At;
+ for (double t = 0; t <= 1; t += step)
+ {
+ At = A(t);
+ nptime = nearest_time(At, B);
+ sample_distance = distance(At, B(nptime));
+ if ( !are_near(pwc(t), sample_distance, 0.001) )
+ {
+ ++total_error;
+ std::cerr << "error at t: " << t << std::endl;
+ }
+ ++total_checked_values;
+ }
+ std::cerr << " total checked values : " << total_checked_values << std::endl;
+ std::cerr << " total error : " << total_error << std::endl;
+ return total_error;
+}
+
+} // end namespace Geom
+
+
+using namespace Geom;
+
+class DCCToy : public Toy
+{
+ private:
+ void draw( cairo_t *cr, std::ostringstream *notify,
+ int width, int height, bool save, std::ostringstream *timer_stream) override
+ {
+ Point ulc(width - 300, height - 60 );
+ toggles[0].bounds = Rect(ulc, ulc + Point(160,25) );
+ toggles[1].bounds = Rect(ulc + Point(0,30), ulc + Point(160,55) );
+ sliders[0].geometry(ulc - Point(450,0), 400);
+ if (toggle0_status != toggles[0].on)
+ {
+ toggle0_status = toggles[0].on;
+ using std::swap;
+ swap(sliders[0], sliders[1]);
+ }
+
+ cairo_set_source_rgba(cr, 0.3, 0.3, 0.3, 1.0);
+ cairo_set_line_width (cr, 0.3);
+
+ if (choice == 0)
+ {
+ A = single_curve_psh.asBezier();
+ cairo_d2_sb(cr, A);
+ }
+ else if (choice == 1)
+ {
+ pA.clear();
+ for (unsigned int k = 0; k < path_curves; ++k)
+ {
+ PointSetHandle psh;
+ psh.pts.resize(path_handles_per_curve);
+ for (unsigned int h = 0; h < path_handles_per_curve; ++h)
+ {
+ unsigned int kk = k * (path_handles_per_curve-1) + h;
+ psh.pts[h] = path_psh.pts[kk];
+ }
+ pA.append(psh.asBezier());
+ }
+ cairo_path(cr, pA);
+ }
+ else if (choice == 2)
+ {
+ for (unsigned int i = 0; i < pwc_curves; ++i)
+ {
+ pwA.segs[i] = pwc_psh[i].asBezier();
+ }
+ cairo_pw_d2_sb(cr, pwA);
+ }
+
+ D2<SBasis> B = B_psh.asBezier();
+ cairo_d2_sb(cr, B);
+
+ double t = sliders[0].value();
+ Piecewise<SBasis> d;
+ unsigned int total_error = 0;
+ Point cursor;
+
+ if (!toggles[0].on)
+ {
+ if (choice == 0)
+ {
+ cursor = A(t);
+ d = distance(A, B, 40);
+ // uncomment following lines to view errors in computing the distance
+ //total_error = dist_test(d, A, B, 0.0004);
+ }
+ else if (choice == 1)
+ {
+ cursor = pA(t);
+ d = distance(pA, B, 40);
+ // uncomment following lines to view errors in computing the distance
+ //total_error = dist_test(d, pA, B, 0.0004);
+ }
+ else if (choice == 2)
+ {
+ cursor = pwA(t);
+ d = distance(pwA, B, 40);
+ // uncomment following lines to view errors in computing the distance
+ //total_error = dist_test(d, pwA, B, 0.0004);
+ }
+
+ double nptB = nearest_time(cursor, B);
+ draw_circ(cr, cursor);
+ cairo_move_to(cr, cursor);
+ cairo_line_to(cr, B(nptB));
+ cairo_stroke(cr);
+ }
+ else
+ {
+ Point np(0,0);
+ cursor = B(t);
+ if (choice == 0)
+ {
+ double nptA = nearest_time(cursor, A);
+ np = A(nptA);
+ d = distance(B, A, 40);
+ // uncomment following lines to view errors in computing the distance
+ //total_error = dist_test(d, B, A, 0.0004);
+ }
+ else if (choice == 1)
+ {
+ double nptA = nearest_time(cursor, pA);
+ np = pA(nptA);
+ d = distance(B, pA, 40);
+ // uncomment following lines to view errors in computing the distance
+ //total_error = dist_test(d, B, pA, 0.0004);
+ }
+ draw_circ(cr, cursor);
+ cairo_move_to(cr, cursor);
+ cairo_line_to(cr, np);
+ cairo_stroke(cr);
+ }
+
+ if (total_error != 0)
+ *notify << "total error: " << total_error << " ";
+
+
+ // draw distance function
+ Piecewise< D2<SBasis> > pwc;
+ pwc.cuts = d.cuts;
+ pwc.segs.resize(d.size());
+ D2<SBasis> piece;
+ double domain_length = 800 / d.domain().extent();
+ for ( unsigned int i = 0; i < d.size(); ++i )
+ {
+ piece[X] = SBasis(Linear(20,20)
+ + domain_length * Linear(d.cuts[i], d.cuts[i+1]));
+ piece[Y] = 3 * d.segs[i];
+ pwc.segs[i] = piece;
+ }
+ cairo_set_source_rgb(cr, 0.7,0,0);
+ cairo_pw_d2_sb(cr, pwc);
+ *notify << "total cuts: " << pwc.cuts.size();
+ if (toggles[1].on)
+ {
+ for (unsigned int i = 0; i < pwc.cuts.size(); ++i)
+ {
+ draw_handle(cr, pwc(pwc.cuts[i]));
+ }
+ }
+ else
+ {
+ draw_handle(cr, pwc(0.0));
+ draw_handle(cr, pwc(0.25));
+ draw_handle(cr, pwc(0.5));
+ draw_handle(cr, pwc(0.75));
+ draw_handle(cr, pwc(1));
+ }
+ draw_circ(cr, pwc(t));
+ cairo_stroke(cr);
+ Toy::draw(cr, notify, width, height, save,timer_stream);
+ }
+
+
+ public:
+ DCCToy()
+ {
+ toggle0_status = false;
+ choice = 0;
+
+ single_curve_handles = 6;
+ path_curves = 3;
+ path_handles_per_curve = 4;
+ path_total_handles = path_curves * (path_handles_per_curve - 1) + 1;
+ pwc_curves = 3;
+ pwc_handles_per_curve = 4;
+ pwc_total_handles = pwc_curves * pwc_handles_per_curve;
+ B_handles = 4;
+
+ if (choice == 0)
+ {
+ for (unsigned int i = 0; i < single_curve_handles; ++i)
+ {
+ single_curve_psh.push_back(700*uniform(), 500*uniform());
+ }
+ handles.push_back(&single_curve_psh);
+ sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t");
+ }
+ else if (choice == 1)
+ {
+ for (unsigned int i = 0; i < path_total_handles; ++i)
+ {
+ path_psh.push_back(700*uniform(), 500*uniform());
+ }
+ handles.push_back(&path_psh);
+ sliders.emplace_back(0.0, path_curves, 0.0, 0.0, "t");
+ }
+ else if (choice == 2)
+ {
+ pwc_psh.resize(pwc_curves);
+ pwA.segs.resize(pwc_curves);
+ pwA.cuts.resize(pwc_curves+1);
+ pwA.cuts[0] = 0;
+ double length = 1.0 / pwc_curves;
+ for (unsigned int i = 0; i < pwc_curves; ++i)
+ {
+ for (unsigned int j = 0; j < pwc_handles_per_curve; ++j)
+ {
+ pwc_psh[i].push_back(700*uniform(), 500*uniform());
+ }
+ handles.push_back(&(pwc_psh[i]));
+ pwA.cuts[i+1] = pwA.cuts[i] + length;
+ }
+ sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t");
+ }
+
+ for (unsigned int i = 0; i < B_handles; ++i)
+ {
+ B_psh.push_back(700*uniform(), 500*uniform());
+ }
+ handles.push_back(&B_psh);
+ sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t");
+
+ toggles.emplace_back("d(A,B) <-> d(B,A)", false);
+ toggles.emplace_back("Show/Hide cuts", false);
+
+ handles.push_back(&(toggles[0]));
+ handles.push_back(&(toggles[1]));
+ handles.push_back(&(sliders[0]));
+
+ }
+
+ private:
+ bool toggle0_status;
+ unsigned int choice;
+ unsigned int single_curve_handles, B_handles;
+ unsigned int path_curves, path_handles_per_curve, path_total_handles;
+ unsigned int pwc_curves, pwc_handles_per_curve, pwc_total_handles;
+ PointSetHandle single_curve_psh;
+ PointSetHandle path_psh;
+ std::vector<PointSetHandle> pwc_psh;
+ PointSetHandle B_psh;
+ std::vector<Toggle> toggles;
+ std::vector<Slider> sliders;
+ D2<SBasis> A;
+ Path pA;
+ Piecewise< D2<SBasis> > pwA;
+};
+
+
+
+
+int main(int argc, char **argv)
+{
+ init( argc, argv, new DCCToy(), 840, 600 );
+ return 0;
+}
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :