diff options
Diffstat (limited to 'src/toys/sweeper.cpp')
-rw-r--r-- | src/toys/sweeper.cpp | 1135 |
1 files changed, 1135 insertions, 0 deletions
diff --git a/src/toys/sweeper.cpp b/src/toys/sweeper.cpp new file mode 100644 index 0000000..7dae586 --- /dev/null +++ b/src/toys/sweeper.cpp @@ -0,0 +1,1135 @@ +#include <iostream> +#include <2geom/path.h> +#include <2geom/basic-intersection.h> +#include <2geom/pathvector.h> +#include <2geom/exception.h> + +#include <cstdlib> +#include <cstdio> +#include <set> +#include <vector> +#include <algorithm> + +#include <limits.h> +#define NULL_IDX UINT_MAX + +#include <2geom/orphan-code/intersection-by-smashing.h> +#include "../2geom/orphan-code/intersection-by-smashing.cpp" + +using namespace Geom; +using namespace std; + + +/* +The sweeper class takes a PathVector as input and generates "events" to let clients construct the relevant graph. + +The basic strategy is the following: +The path is split into "tiles": a tile consists in 2 boxes related by a (monotonic) curve. + +The tiles are created at the very beginning, using a sweep, but *no care* is taken to topology +information at this step! All the boxes of all the tiles are then enlarged so that they are +either equal or disjoint. +[TODO: we should look for curves traversing boxes, split them and repeat the process...] + +The sweeper maintains a virtual sweepline, that is the limit of the "known area". The tiles can have 2 states: +open if they have one end in the known area, and one in the unknown, closed otherwise. +[TODO: open/close should belong to tiles pointers, not tiles...] + +The sorted list of open tiles intersecting the sweep line is called the "context". +*!*WARNING*!*: because the sweep line is not straight, closed tiles can still be in the context!! +they can only be removed once the end of the last box is reached. + +The events are changes in the context when the sweep line crosses boxes. +They are obtained by sorting the tiles according to one or the other of theire end boxes depending +on the open/close state. + +A "big" event happens when the sweep line reaches a new 'box'. After such a "big" event, the sweep +line goes round the new box along it's 3 other sides. +N.B.: in an ideal world, all tiles ending at one box would be on one side, all the tiles starting +there on the other. Unfortunately, because we have boxes as vertices, things are not that nice: +open/closed tiles can appear in any order around a vertex, even in the monotonic case(!). Morover, +our fat vertices have a non zero "duration", during which many things can happen: this is why we +have to keep closed edges in the context until both ends of theire boxes are reached... + + +To keep things uniform, such "big" events are split into elementary ones: opening/closing of a single +edge. One such event is generated for each tile around the current 'box', in CCW order (geometrically, +the sweepline is deformed in a neighborhood of the box to go round it for a certain amount, enter the +box and come back inside the box; the piece inside the box is a "virtual edge" that is not added for +good but that we keep track of). The event knows if it's the last one in such a sequence, so that the +client knows when to do the additional work required to "close" the vertex construction. Hmmm. It's +hard to explain the moves without a drawing here...(see sweep.svg in the doc dir). There are + +*Closings: insert a new the relevant tile in the context with a "exit" flag. + +*Openings: insert a new the relevant tile in the context with a "entry" flag. + +At the end of a box, the relevant exit/entries are purged from the context. + + +N.B. I doubt we can do boolops without building the full graph, i.e. having different clients to obtain +different outputs. So splitting sweeper/grpah builder is maybe not so relevant w/r to functionality +(only code organization). +*/ + + +//TODO: decline intersections algorithms for each kind of curves... +//TODO: write an intersector that can work on sub domains. +//TODO: factor computation of derivative and the like out. +std::vector<SmashIntersection> monotonic_smash_intersect( Curve const &a, Interval a_dom, + Curve const &b, Interval b_dom, double tol){ + std::vector<SmashIntersection> result; + D2<SBasis> asb = a.toSBasis(); + asb = portion( asb, a_dom ); + D2<SBasis> bsb = b.toSBasis(); + bsb = portion( bsb, b_dom ); + result = monotonic_smash_intersect(asb, bsb, tol ); + for (auto & i : result){ + i.times[X] *= a_dom.extent(); + i.times[X] += a_dom.min(); + i.times[Y] *= b_dom.extent(); + i.times[Y] += b_dom.min(); + } + return result; +} + + + +class Sweeper{ +public: + + //--------------------------- + // utils... + //--------------------------- + + //near predicate utilized in process_splits + template<typename T> + struct NearPredicate { + double tol; + NearPredicate(double eps):tol(eps){} + NearPredicate(){tol = EPSILON;}//??? + bool operator()(T x, T y) { return are_near(x, y, tol); } }; + + // ensures that f and t are elements of a vector, sorts and uniqueifies + // also asserts that no values fall outside of f and t + // if f is greater than t, the sort is in reverse + void process_splits(std::vector<double> &splits, double f, double t, double tol=EPSILON) { + //splits.push_back(f); + //splits.push_back(t); + std::sort(splits.begin(), splits.end()); + std::vector<double>::iterator end = std::unique(splits.begin(), splits.end(), NearPredicate<double>(tol)); + splits.resize(end - splits.begin()); + + //remove any splits which fall outside t / f + while(!splits.empty() && splits.front() < f+tol) splits.erase(splits.begin()); + splits.insert(splits.begin(), f); + //splits[0] = f; + while(!splits.empty() && splits.back() > t-tol) splits.erase(splits.end() - 1); + splits.push_back(t); + //splits.back() = t; + } + + struct IntersectionMinTimeOrder { + unsigned which; + IntersectionMinTimeOrder (unsigned idx) : which(idx) {} + bool operator()(SmashIntersection const &a, SmashIntersection const &b) const { + return a.times[which].min() < b.times[which].min(); + } + }; + + // ensures that f and t are elements of a vector, sorts and uniqueifies + // also asserts that no values fall outside of f and t + // if f is greater than t, the sort is in reverse + std::vector<std::pair<Interval, Rect> > + process_intersections(std::vector<SmashIntersection> &inters, unsigned which, unsigned tileidx) { + std::vector<std::pair<Interval, Rect> > result; + std::pair<Interval, Rect> apair; + Interval dom ( tiles_data[tileidx].f, tiles_data[tileidx].t ); + apair.first = Interval( dom.min() ); + apair.second = tiles_data[tileidx].fbox; + result.push_back( apair ); + + std::sort(inters.begin(), inters.end(), IntersectionMinTimeOrder(which) ); + for (auto & inter : inters){ + if ( !inter.times[which].intersects( dom ) )//this should never happen. + continue; + if ( result.back().first.intersects( inter.times[which] ) ){ + result.back().first.unionWith( inter.times[which] ); + result.back().second.unionWith( inter.bbox ); + }else{ + apair.first = inter.times[which]; + apair.second = inter.bbox; + result.push_back( apair ); + } + } + apair.first = Interval( dom.max() ); + apair.second = tiles_data[tileidx].tbox; + if ( result.size() > 1 && result.back().first.intersects( apair.first ) ){ + result.back().first.unionWith( apair.first ); + result.back().second.unionWith( apair.second ); + }else{ + result.push_back( apair ); + } + return result; + } + + + //--------------------------- + // Tiles. + //--------------------------- + + //A tile is a "light edge": just two boxes, joint by a curve. + //it is open iff intersected by the sweepline. + class Tile{ + public: + unsigned path; + unsigned curve; + double f; + double t; + Rect fbox, tbox; + bool reversed;//with respect to sweep direction. Flip f/t instead? + bool open;//means sweepline currently cuts it (i.e. one end in the known area, the other in the unknown). + int state;//-1: both ends in unknown area, 0:one end in each, 1: both in known area. + //Warning: we can not delete a tile immediately when it's past(=closed again), only when the end of it's tbox is!. + Rect bbox(){Rect b = fbox; b.unionWith(tbox); return b;} + Point min(){return ( bbox().min() ); } + Point max(){return ( bbox().max() ); } +// Rect cur_box() const {return ((open)^(reversed) ) ? tbox : fbox; } + Rect cur_box() const { return ((state>=0)^(reversed) ) ? tbox : fbox; } + Rect first_box() const {return ( reversed ) ? tbox : fbox; } + Rect last_box() const {return ( reversed ) ? fbox : tbox; } + }; + + D2<SBasis> tileToSB(Tile const &tile){ + //TODO: don't convert each time!!!!!! + assert( tile.path < paths.size() ); + assert( tile.curve < paths[tile.path].size() ); + D2<SBasis> c = paths[tile.path][tile.curve].toSBasis(); + c = portion( c, Interval( tile.f, tile.t ) ); + return c; + } + + //SweepOrder for Rects or Tiles. + class SweepOrder{ + public: + Dim2 dim; + SweepOrder(Dim2 d) : dim(d) {} + bool operator()(const Rect &a, const Rect &b) const { + return Point::LexLessRt(dim)(a.min(), b.min()); + } + bool operator()(const Tile &a, const Tile &b) const { + return Point::LexLessRt(dim)(a.cur_box().min(), b.cur_box().min()); + } + }; + + class PtrSweepOrder{ + public: + Dim2 dim; + std::vector<Tile>::iterator const begin; + PtrSweepOrder(std::vector<Tile>::iterator const beg, Dim2 d) : dim(d), begin(beg){} + bool operator()(const unsigned a, const unsigned b) const { + return Point::LexLessRt(dim)((begin+a)->cur_box().min(), (begin+b)->cur_box().min()); + } + }; + + + //--------------------------- + // Vertices. + //--------------------------- + + //A ray is nothing but an edge ending or starting at a given vertex, + some info about when/where it exited a "separating" box; + struct Ray{ + public: + unsigned tile; + bool centrifuge;//true if the intrinsic orientation of curve points away from the vertex. + //exit info: + unsigned exit_side;//0:y=min; 1:x=max; 2:y=max; 3:x=min. + double exit_place; //x or y value on the exit line. + double exit_time; //exit time on curve. + Ray(){tile = NULL_IDX; exit_side = 4;} + Ray(unsigned tile_idx, unsigned s, double p, double t){ + tile = tile_idx; + exit_side =s; + exit_place = p; + exit_time = t; + } + Ray(unsigned tile_idx, bool outward){ + tile = tile_idx; + exit_side = 4; + centrifuge = outward; + exit_time = (centrifuge) ? 2 : -1 ; + } + void setExitInfo( unsigned side, double place, double time){ + exit_side = side; + exit_place = place; + exit_time = time; + } + }; + + class FatVertex : public Rect{ + public: + std::vector<Ray> rays; + FatVertex(const Rect &r, unsigned const tile, bool centrifuge) : Rect(r){ + rays.push_back( Ray(tile, centrifuge) ); + } + FatVertex(Rect r) : Rect(r){} + FatVertex() : Rect(){} + void erase(unsigned from, unsigned to){ + unsigned size = to-from; + from = from % rays.size(); + to = from + size; + + if (to >= rays.size() ){ + to = to % rays.size(); + rays.erase( rays.begin()+from, rays.end() ); + rays.erase( rays.begin(), rays.begin()+to ); + }else{ + rays.erase( rays.begin()+from, rays.begin()+to ); + } + + } + }; + + //--------------------------- + // Context related stuff. + //--------------------------- + + class Event{ + public: + bool opening;//true means an edge is added, otherwise an edge is removed from context. + unsigned tile;//which tile to open/close. + unsigned insert_at;//where to insert the next tile in the context. + //unsigned erase_at;//idx of the tile to close in the context. = context.find(tile). + bool to_be_continued; + bool empty(){ + return tile==NULL_IDX; + } + Event(){ + opening = false; + insert_at = 0; + //erase_at = 0; + tile = NULL_IDX; + to_be_continued = false; + } + }; + + void printEvent(Event const &e){ + std::printf("Event: "); + std::printf("%s, ", e.opening?"opening":"closing"); + std::printf("insert_at:%u, ", e.insert_at); + //std::printf("erase_at:%u, ", e.erase_at); + std::printf("tile:%u.\n", e.tile); + } + + class Context : public std::vector<std::pair<unsigned,bool> >{//first = tile, second = true if it's a birth (+). + public: + Point last_pos; + FatVertex pending_vertex; + Event pending_event; + + unsigned find(unsigned const tile, bool positive_only=false){ + for (unsigned i=0; i<size(); i++){ + if ( (*this)[i].first == tile ){ + if ( (*this)[i].second || !positive_only ) return i; + } + } + return (*this).size(); + } + }; + void printContext(){ + std::printf("context:["); + for (unsigned i=0; i<context.size(); i++){ + unsigned tile = context[i].first; + assert( tile<tiles_data.size() ); + std::printf(" %s%u%s", (tiles_data[ tile ].reversed)?"-":"+", tile, (context[i].second)?"o":"c"); +// assert( context[i].second || !tiles_data[ tile ].open); + assert( context[i].second || tiles_data[ tile ].state==1); + } + std::printf("]\n"); + } + + + + //---- + //This is the heart of it all!! Take particular care to non linear sweep line... + //---- + //Given a point on the sweep line, (supposed to be the min() of a vertex not yet connected to the already known part), + //find the first edge "after" it in the context. Pretty tricky atm :-( + //TODO: implement this as a lower_bound (?). + + unsigned contextRanking(Point const &pt){ + +// std::printf("contextRanking:------------------------------------\n"); + + unsigned rank = context.size(); + std::vector<unsigned> unmatched_closed_tiles = std::vector<unsigned>(); + +// std::printf("Scan context.\n"); + + for (unsigned i=0; i<context.size(); i++){ + + unsigned tile_idx = context[i].first; + assert( tile_idx < tiles_data.size() ); +// std::printf("testing %u (e=%u),", i, tile_idx); + + Tile tile = tiles_data[tile_idx]; + assert( tile.state >= 0 ); + + //if the tile is open (i.e. not both ends in the known area) and point is below/above the tile's bbox: + if ( tile.state == 0 ){ +// std::printf("opened tile, "); + if (pt[1-dim] < tile.min()[1-dim] ) { +// printContext(); +// std::printf("below bbox %u!\n", i); + rank = i; + break; + } + if (pt[1-dim] > tile.max()[1-dim] ){ +// std::printf("above bbox %u!\n", i); + continue; + } + + //TODO: don't convert each time!!!!!! + D2<SBasis> c = tileToSB( tile ); + + std::vector<double> times = roots(c[dim]-pt[dim]); + if (times.size()==0){ + assert( tile.first_box()[dim].contains(pt[dim]) ); + if ( pt[1-dim] < tile.first_box()[1-dim].min() ){ +// std::printf("open+hit box %u!\n", i); + rank = i; + break; + }else{ + continue; + } + } + if ( pt[1-dim] < c[1-dim](times.front()) ){ +// std::printf("open+hit curve %u!\n", i); + rank = i; + break; + } + } + +// std::printf("closed tile, "); + + + //At this point, the tile is closed (i.e. both ends are in the known area) + //Such tiles do 'nested parens' like travels in the unknown area. + //We are interested in the second occurrence only (to give a chance to open tiles to exist in between). + if ( unmatched_closed_tiles.size()==0 || tile_idx != unmatched_closed_tiles.back() ){ + unmatched_closed_tiles.push_back( tile_idx ); +// std::printf("open paren %u\n",tile_idx); + continue; + } + unmatched_closed_tiles.pop_back(); + +// std::printf("close paren, "); + + if ( !tile.bbox().contains( pt ) ){ + continue; + } + +// std::printf("in bbox, "); + + //At least one of fbox[dim], tbox[dim] has to contain the pt[dim]: assert it? + + //Find intersection with the hline(vline if dim=Y) through the point + double hit_place; + //TODO: don't convert each time!!!!!! + D2<SBasis> c = tileToSB( tile ); + std::vector<double> times = roots(c[1-dim]-pt[1-dim]); + if ( times.size()>0 ){ +// std::printf("hit curve,"); + hit_place = c[dim](times.front()); + }else{ +// std::printf("hit box, "); + //if there was no intersection, the line went through the first_box + assert( tile.first_box()[1-dim].contains(pt[1-dim]) ); + continue; + } + + if ( pt[dim] > hit_place ){ +// std::printf("wrong side, "); + continue; + } +// std::printf("good side, "); + rank = i; + break; + } + +// std::printf("rank %u.\n", rank); +// printContext(); + assert( rank<=tiles_data.size() ); + return rank; + } + + //TODO: optimize this. + //it's done the slow way for debugging purpose... + void purgeDeadTiles(){ + //std::printf("purge "); + //printContext(); + for (unsigned i=0; i<context.size(); i++){ + assert( context[i].first<tiles_data.size() ); + Tile tile = tiles_data[context[i].first]; + if (tile.state==1 && Point::LexLessRt(dim)( tile.fbox.max(), context.last_pos ) && Point::LexLessRt(dim)( tile.tbox.max(), context.last_pos ) ){ +// if (!tile.open && Point::LexLessRt(dim)( tile.fbox.max(), context.last_pos ) && Point::LexLessRt(dim)( tile.tbox.max(), context.last_pos ) ){ + unsigned j; + for (j=i+1; j<context.size() && context[j].first != context[i].first; j++){} + assert ( j < context.size() ); + if ( context[j].first == context[i].first){ + assert ( context[j].second == !context[i].second ); + context.erase(context.begin()+j); + context.erase(context.begin()+i); +// printContext(); + i--; + } + } + } + return; + } + + void applyEvent(Event event){ +// std::printf("Apply event : "); + if(event.empty()){ +// std::printf("empty event!\n"); + return; + } + +// printEvent(event); +// std::printf(" old "); +// printContext(); + + assert ( context.begin() + event.insert_at <= context.end() ); + + if (!event.opening){ +// unsigned idx = event.erase_at; +// assert( idx == context.find(event.tile) ); +// assert( context[idx].first == event.tile); + tiles_data[event.tile].open = false; + tiles_data[event.tile].state = 1; + //context.erase(context.begin()+idx); + unsigned idx = event.insert_at; + context.insert(context.begin()+idx, std::pair<unsigned, bool>(event.tile, false) ); + }else{ + unsigned idx = event.insert_at; + tiles_data[event.tile].open = true; + tiles_data[event.tile].state = 0; + context.insert(context.begin()+idx, std::pair<unsigned, bool>(event.tile, true) ); + sortTiles(); + } + context.last_pos = context.pending_vertex.min(); + context.last_pos[1-dim] = context.pending_vertex.max()[1-dim]; + +// std::printf(" new "); +// printContext(); +// std::printf("\n"); + //context.pending_event = Event();is this a good idea? + } + + + + //--------------------------- + // Sweeper. + //--------------------------- + + PathVector paths; + std::vector<Tile> tiles_data; + std::vector<unsigned> tiles; + std::vector<Rect> vtxboxes; + Context context; + double tol; + Dim2 dim; + + + //------------------------------- + //-- Tiles preparation. + //------------------------------- + + //split input paths into monotonic pieces... + void createMonotonicTiles(){ + for ( unsigned i=0; i<paths.size(); i++){ + for ( unsigned j=0; j<paths[i].size(); j++){ + //find the points where slope is 0°, 45°, 90°, 135°... + D2<SBasis> deriv = derivative( paths[i][j].toSBasis() ); + std::vector<double> splits0 = roots( deriv[X] ); + std::vector<double> splits90 = roots( deriv[Y] ); + std::vector<double> splits45 = roots( deriv[X]- deriv[Y] ); + std::vector<double> splits135 = roots( deriv[X] + deriv[Y] ); + std::vector<double> splits; + splits.insert(splits.begin(), splits0.begin(), splits0.end() ); + splits.insert(splits.begin(), splits90.begin(), splits90.end() ); + splits.insert(splits.begin(), splits45.begin(), splits45.end() ); + splits.insert(splits.begin(), splits135.begin(), splits135.end() ); + process_splits(splits,0,1); + + for(unsigned k = 1; k < splits.size(); k++){ + Tile tile; + tile.path = i; + tile.curve = j; + tile.f = splits[k-1]; + tile.t = splits[k]; + //TODO: use meaningful tolerance here!! + Point fp = paths[i][j].pointAt(tile.f); + Point tp = paths[i][j].pointAt(tile.t); + tile.fbox = Rect(fp, fp ); + tile.tbox = Rect(tp, tp ); + tile.open = false; + tile.state = -1; + tile.reversed = Point::LexLessRt(dim)(tp, fp); + + tiles_data.push_back(tile); + } + } + } + std::sort(tiles_data.begin(), tiles_data.end(), SweepOrder(dim) ); + } + + void splitTile(unsigned i, double t, double tolerance=0, bool sort = true){ + assert( i<tiles_data.size() ); + Tile newtile = tiles_data[i]; + assert( newtile.f < t && t < newtile.t ); + newtile.f = t; + //newtile.fbox = fatPoint(paths[newtile.path][newtile.curve].pointAt(t), tolerance ); + Point p = paths[newtile.path][newtile.curve].pointAt(t); + newtile.fbox = Rect(p, p); + newtile.fbox.expandBy( tolerance ); + tiles_data[i].tbox = newtile.fbox; + tiles_data[i].t = t; + tiles_data.insert(tiles_data.begin()+i+1, newtile); + if (sort) + std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) ); + } + void splitTile(unsigned i, SmashIntersection inter, unsigned which,bool sort = true){ + double t = inter.times[which].middle(); + assert( i<tiles_data.size() ); + Tile newtile = tiles_data[i]; + assert( newtile.f < t && t < newtile.t ); + newtile.f = t; + newtile.fbox = inter.bbox; + tiles_data[i].tbox = newtile.fbox; + tiles_data[i].t = t; + tiles_data.insert(tiles_data.begin()+i+1, newtile); + if (sort) + std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) ); + } +#if 0 + void splitTile(unsigned i, std::vector<double> const ×, double tolerance=0, bool sort = true){ + if ( times.size()<3 ) return; + assert( i<tiles_data.size() ); + std::vector<Tile> pieces ( times.size()-2, tiles_data[i] ); + Rect prevbox = tiles_data[i].fbox; + for (unsigned k=0; k < times.size()-2; k++){ + pieces[k].f = times[k]; + pieces[k].t = times[k+1]; + pieces[k].fbox = prevbox; + //TODO: use relevant precision here. + prevbox = fatPoint(paths[tiles_data[i].path][tiles_data[i].curve].pointAt(times[k+1]), tolerance ); + pieces[k].tbox = prevbox; + } + tiles_data.insert(tiles_data.begin()+i, pieces.begin(), pieces.end() ); + unsigned newi = i + times.size()-2; + assert( newi<tiles_data.size() ); + assert( newi>=1 ); + tiles_data[newi].f = tiles_data[newi-1].t; + tiles_data[newi].fbox = tiles_data[newi-1].tbox; + + if (sort) + std::sort(tiles_data.begin()+i, tiles_data.end(), SweepOrder(dim) ); + } +#else + void splitTile(unsigned i, std::vector<std::pair<Interval,Rect> > const &cuts, bool sort = true){ + assert ( cuts.size() >= 2 ); + assert( i<tiles_data.size() ); + std::vector<Tile> pieces ( cuts.size()-1, tiles_data[i] ); + for (unsigned k=1; k+1 < cuts.size(); k++){ + pieces[k-1].t = cuts[k].first.middle(); + pieces[k ].f = cuts[k].first.middle(); + pieces[k-1].tbox = cuts[k].second; + pieces[k ].fbox = cuts[k].second; + } + pieces.front().fbox.unionWith( cuts[0].second ); + pieces.back().tbox.unionWith( cuts.back().second ); + + tiles_data.insert(tiles_data.begin()+i, pieces.begin(), pieces.end()-1 ); + unsigned newi = i + cuts.size()-2; + assert( newi < tiles_data.size() ); + tiles_data[newi] = pieces.back(); + + if (sort) + std::sort(tiles_data.begin()+i, tiles_data.end(), SweepOrder(dim) ); + } +#endif + + //TODO: maybe not optimal. For a fully optimized sweep, it would be nice to have + //an efficient way to way find *only the first* intersection (in sweep direction)... + void splitIntersectingTiles(){ + //make sure it is sorted, but should be ok. (remove sorting at the end of monotonic tiles creation? + std::sort(tiles_data.begin(), tiles_data.end(), SweepOrder(dim) ); + +// std::printf("\nFind intersections: tiles_data.size():%u\n", tiles_data.size() ); + + for (unsigned i=0; i+1<tiles_data.size(); i++){ + //std::printf("\ni=%u (%u([%f,%f]))\n", i, tiles_data[i].curve, tiles_data[i].f, tiles_data[i].t ); + std::vector<SmashIntersection> inters_on_i; + for (unsigned j=i+1; j<tiles_data.size(); j++){ + //std::printf(" j=%u (%u)\n", j,tiles_data[j].curve ); + if ( Point::LexLessRt(dim)(tiles_data[i].max(), tiles_data[j].min()) ) break; + + unsigned pi = tiles_data[i].path; + unsigned ci = tiles_data[i].curve; + unsigned pj = tiles_data[j].path; + unsigned cj = tiles_data[j].curve; + std::vector<SmashIntersection> intersections; + + intersections = monotonic_smash_intersect(paths[pi][ci], Interval(tiles_data[i].f, tiles_data[i].t), + paths[pj][cj], Interval(tiles_data[j].f, tiles_data[j].t), tol ); + inters_on_i.insert( inters_on_i.end(), intersections.begin(), intersections.end() ); + std::vector<std::pair<Interval, Rect> > cuts = process_intersections(intersections, 1, j); + +// std::printf(" >|%u/%u|=%u. times_j:%u", i, j, crossings.size(), times_j.size() ); + + splitTile(j, cuts, false); + j += cuts.size()-2; + } + + //process_splits(times_i, tiles_data[i].f, tiles_data[i].t); + //assert(times_i.size()>=2); + //splitTile(i, times_i, tol, false); + //i+=times_i.size()-2; + std::vector<std::pair<Interval, Rect> > cuts_on_i = process_intersections(inters_on_i, 0, i); + splitTile(i, cuts_on_i, false); + i += cuts_on_i.size()-2; + //std::printf("new i:%u, tiles_data: %u\n",i ,tiles_data.size()); + //std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) ); + std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) ); + } + //this last sorting should be useless!! + std::sort(tiles_data.begin(), tiles_data.end(), SweepOrder(dim) ); + } + + void sortTiles(){ + std::sort(tiles.begin(), tiles.end(), PtrSweepOrder(tiles_data.begin(), dim) ); + } + + + //------------------------------- + //-- Vertices boxes cookup. + //------------------------------- + + void fuseInsert(const Rect &b, std::vector<Rect> &boxes, Dim2 dim){ + //TODO: this can be optimized... + for (unsigned i=0; i<boxes.size(); i++){ + if ( Point::LexLessRt(dim)( b.max(), boxes[i].min() ) ) break; + if ( b.intersects( boxes[i] ) ){ + Rect bigb = b; + bigb.unionWith( boxes[i] ); + boxes.erase( boxes.begin()+i ); + fuseInsert( bigb, boxes, dim); + return; + } + } + std::vector<Rect>::iterator pos = std::lower_bound(boxes.begin(), boxes.end(), b, SweepOrder(dim) ); + boxes.insert( pos, b ); + } + + //debug only!! + bool isContained(Rect b, std::vector<Rect> const &boxes ){ + for (const auto & boxe : boxes){ + if ( boxe.contains(b) ) return true; + } + return false; + } + + //Collect vertex boxes. Fuse overlapping ones. + //NB: enlarging a vertex may create intersection with already scanned ones... + std::vector<Rect> collectBoxes(){ + std::vector<Rect> ret; + for (auto & i : tiles_data){ + fuseInsert(i.fbox, ret, dim); + fuseInsert(i.tbox, ret, dim); + } + return ret; + } + + //enlarge tiles ends to match the vertices bounding boxes. + //remove edges fully contained in one vertex bbox. + void enlargeTilesEnds(const std::vector<Rect> &boxes ){ + for (unsigned i=0; i<tiles_data.size(); i++){ + std::vector<Rect>::const_iterator f_it; + f_it = std::lower_bound(boxes.begin(), boxes.end(), tiles_data[i].fbox, SweepOrder(dim) ); + if ( f_it==boxes.end() ) f_it--; + while (!(*f_it).contains(tiles_data[i].fbox) && f_it != boxes.begin()){ + f_it--; + } + assert( (*f_it).contains(tiles_data[i].fbox) ); + tiles_data[i].fbox = *f_it; + + std::vector<Rect>::const_iterator t_it; + t_it = std::lower_bound(boxes.begin(), boxes.end(), tiles_data[i].tbox, SweepOrder(dim) ); + if ( t_it==boxes.end() ) t_it--; + while (!(*t_it).contains(tiles_data[i].tbox) && t_it != boxes.begin()){ + t_it--; + } + assert( (*t_it).contains(tiles_data[i].tbox) ); + tiles_data[i].tbox = *t_it; + + //NB: enlarging the ends may swapp their sweep order!!! + tiles_data[i].reversed = Point::LexLessRt(dim)( tiles_data[i].tbox.min(), tiles_data[i].fbox.min()); + + if ( f_it==t_it ){ + tiles_data.erase(tiles_data.begin()+i); + i-=1; + } + } + } + + //Make sure tiles stop at vertices. Split them if needed. + //Returns true if at least one tile was split. + bool splitTilesThroughFatPoints(std::vector<Rect> &boxes ){ + + std::sort(tiles.begin(), tiles.end(), PtrSweepOrder(tiles_data.begin(), dim) ); + std::sort(boxes.begin(), boxes.end(), SweepOrder(dim) ); + + bool result = false; + for (unsigned i=0; i<tiles_data.size(); i++){ + for (auto & boxe : boxes){ + if ( Point::LexLessRt(dim)( tiles_data[i].max(), boxe.min()) ) break; + if ( Point::LexLessRt(dim)( boxe.max(), tiles_data[i].min()) ) continue; + if ( !boxe.intersects( tiles_data[i].bbox() ) ) continue; + if ( tiles_data[i].fbox.intersects( boxe ) ) continue; + if ( tiles_data[i].tbox.intersects( boxe ) ) continue; + + //at this point box[k] intersects the curve bbox away from the fbox and tbox. + + D2<SBasis> c = tileToSB( tiles_data[i] ); +//----------> use level-set!! + for (unsigned corner=0; corner<4; corner++){ + unsigned D = corner % 2; + double val = boxe.corner(corner)[D]; + std::vector<double> times = roots( c[D] - val ); + if ( times.size()>0 ){ + double t = lerp( times.front(), tiles_data[i].f, tiles_data[i].t ); + double hit_place = c[1-D](times.front()); + if ( boxe[1-D].contains(hit_place) ){ + result = true; + //taking a point on the boundary is dangerous!! + //Either use >0 tolerance here, or find 2 intersection points and split in between. + splitTile( i, t, tol, false); + break; + } + } + } + } + } + return result; + } + + + + + + //TODO: rewrite all this!... + //------------------------------------------------------------------------------------------- + //------------------------------------------------------------------------------------------- + //------------------------------------------------------------------------------------------- + //------------------------------- + //-- ccw Sorting of rays around a vertex. + //------------------------------- + //------------------------------------------------------------------------------------------- + //------------------------------------------------------------------------------------------- + //------------------------------------------------------------------------------------------- + //returns an (infinite) rect around "a" separating it from "b". Nota: 3 sides are infinite! + //TODO: place the cut where there is most space... + OptRect separate(Rect const &a, Rect const &b){ + Rect ret ( Interval( -infinity(), infinity() ) , Interval(-infinity(), infinity() ) ); + double gap = 0; + unsigned dir = 4; + if (b[X].min() - a[X].max() > gap){ + gap = b[X].min() - a[X].max(); + dir = 0; + } + if (a[X].min() - b[X].max() > gap){ + gap = a[X].min() - b[X].max(); + dir = 1; + } + if (b[Y].min() - a[Y].max() > gap){ + gap = b[Y].min() - a[Y].max(); + dir = 2; + } + if (a[Y].min() - b[Y].max() > gap){ + gap = a[Y].min() - b[Y].max(); + dir = 3; + } + switch (dir) { + case 0: ret[X].setMax(( a.max()[X] + b.min()[X] )/ 2); break; + case 1: ret[X].setMin(( b.max()[X] + a.min()[X] )/ 2); break; + case 2: ret[Y].setMax(( a.max()[Y] + b.min()[Y] )/ 2); break; + case 3: ret[Y].setMin(( b.max()[Y] + a.min()[Y] )/ 2); break; + case 4: return OptRect(); + } + return OptRect(ret); + } + + //Find 4 lines (returned as a Rect sides) that cut all the rays (=edges). *!* some side might be infinite. + OptRect isolateVertex(Rect const &box){ + OptRect sep ( Interval( -infinity(), infinity() ) , Interval(-infinity(), infinity() ) ); + //separate this vertex from the others. Find a better way. + for (auto & vtxboxe : vtxboxes){ + if ( Point::LexLessRt(dim)( sep->max(), vtxboxe.min() ) ){ + break; + } + if ( vtxboxe!=box ){//&& !vtxboxes[i].intersects(box) ){ + OptRect sepi = separate(box, vtxboxe); + if ( sep && sepi ){ + sep = intersect(*sep, *sepi); + }else{ + std::cout<<"box="<<box<<"\n"; + std::cout<<"vtxboxes[i]="<<vtxboxe<<"\n"; + assert(sepi); + } + } + } + if (!sep) THROW_EXCEPTION("Invalid intersection data."); + return sep; + } + + //TODO: argh... rewrite to have "dim"=min first place. + struct ExitPoint{ + public: + unsigned side; //0:y=min; 1:x=max; 2:y=max; 3:x=min. + double place; //x or y value on the exit line. + unsigned ray_idx; + double time; //exit time on curve. + ExitPoint(){} + ExitPoint(unsigned s, double p, unsigned r, double t){ + side =s; + place = p; + ray_idx = r; + time = t; + } + }; + + + class ExitOrder{ + public: + bool operator()(Ray a, Ray b) const { + if ( a.exit_side < b.exit_side ) return true; + if ( a.exit_side > b.exit_side ) return false; + if ( a.exit_side <= 1) { + return ( a.exit_place < b.exit_place ); + } + return ( a.exit_place > b.exit_place ); + } + }; + + void printRay(Ray const &r){ + std::printf("Ray: tile=%u, centrifuge=%u, side=%u, place=%f\n", + r.tile, r.centrifuge, r.exit_side, r.exit_place); + } + void printVertex(FatVertex const &v){ + std::printf("Vertex: [%f,%f]x[%f,%f]\n", v[X].min(),v[X].max(),v[Y].min(),v[Y].max() ); + for (const auto & ray : v.rays){ + printRay(ray); + } + } + + //TODO: use a partial order on input coming from the context + Try quadrant order just in case it's enough. + //TODO: use monotonic assumption. + void sortRays( FatVertex &v ){ + OptRect sep = isolateVertex(v); + + for (unsigned i=0; i < v.rays.size(); i++){ + v.rays[i].centrifuge = (tiles_data[ v.rays[i].tile ].fbox == v); + v.rays[i].exit_time = v.rays[i].centrifuge ? 1 : 0 ; + } + + for (unsigned i=0; i < v.rays.size(); i++){ + //TODO: don't convert each time!!! + assert( v.rays[i].tile < tiles_data.size() ); + D2<SBasis> c = tileToSB( tiles_data[ v.rays[i].tile ] ); + + for (unsigned side=0; side<4; side++){//scan X or Y direction, on level min or max... + double level = sep->corner( side )[1-side%2]; + if (level != infinity() && level != -infinity() ){ + std::vector<double> times = roots(c[1-side%2]-level); + if ( times.size() > 0 ) { + double t; + assert( v.rays[i].tile < tiles_data.size() ); + if (tiles_data[ v.rays[i].tile ].fbox == v){ + t = times.front(); + if ( v.rays[i].exit_side > 3 || v.rays[i].exit_time > t ){ + v.rays[i].setExitInfo( side, c[side%2](t), t); + } + }else{ + t = times.back(); + if ( v.rays[i].exit_side > 3 || v.rays[i].exit_time < t ){ + v.rays[i].setExitInfo( side, c[side%2](t), t); + } + } + } + } + } + } + + //Rk: at this point, side == 4 means the edge is contained in the intersection box (?)...; + std::sort( v.rays.begin(), v.rays.end(), ExitOrder() ); + } + + + //------------------------------- + //-- initialize all data. + //------------------------------- + + Sweeper(){} + Sweeper(PathVector const &input_paths, Dim2 sweep_dir, double tolerance=1e-5){ + paths = input_paths;//use a ptr... + dim = sweep_dir; + tol = tolerance; + + //split paths into monotonic tiles + createMonotonicTiles(); + + //split at tiles intersections + splitIntersectingTiles(); + + //handle overlapping end boxes/and tiles traversing boxes. + do{ + vtxboxes = collectBoxes(); + }while ( splitTilesThroughFatPoints(vtxboxes) ); + + enlargeTilesEnds(vtxboxes); + + //now create the pointers to the tiles. + tiles = std::vector<unsigned>(tiles_data.size(), 0); + for (unsigned i=0; i<tiles_data.size(); i++){ + tiles[i] = i; + } + sortTiles(); + + //initialize the context. + if (tiles_data.size()>0){ + context.clear(); + context.last_pos = tiles_data[tiles.front()].min(); + context.last_pos[dim] -= 1; + context.pending_vertex = FatVertex(); + context.pending_event = Event(); + } + +// std::printf("Sweeper initialized (%u tiles)\n", tiles_data.size()); + } + + + //------------------------------- + //-- Event walk. + //------------------------------- + + + Event getNextEvent(){ +// std::printf("getNextEvent():\n"); + +// std::printf("initial contex:\n"); +// printContext(); + Event old_event = context.pending_event, event; +// std::printf("apply old event\n"); + applyEvent(context.pending_event); +// printContext(); + + if (context.pending_vertex.rays.size()== 0){ +// std::printf("cook up a new vertex\n"); + + //find the edges at the next vertex. + //TODO: implement this as a lower bound!! + std::vector<unsigned>::iterator low, high; + //Warning: bad looking test, but make sure we advance even in case of 0 width boxes... + for ( low = tiles.begin(); low != tiles.end() && + ( tiles_data[*low].state==1 || Point::LexLessRt(dim)(tiles_data[*low].cur_box().min(), context.last_pos) ); low++){} + + if ( low == tiles.end() ){ +// std::printf("no more event found\n"); + return(Event()); + } + Rect pos = tiles_data[ *low ].cur_box(); + context.last_pos = pos.min(); + context.last_pos[1-dim] = pos.max()[1-dim]; + +// printContext(); +// std::printf("purgeDeadTiles\n"); + purgeDeadTiles(); +// printContext(); + + FatVertex v(pos); + high = low; + do{ +// v.rays.push_back( Ray(*high, !tiles_data[*high].open) ); + v.rays.push_back( Ray(*high, tiles_data[*high].state!=0) ); + high++; + }while( high != tiles.end() && tiles_data[ *high ].cur_box()==pos ); + +// std::printf("sortRays\n"); + sortRays(v); + + //Look for an opened tile + unsigned i=0; + + for( i=0; i<v.rays.size(); ++i){assert( v.rays[i].tile<tiles_data.size() );} +// for( i=0; i<v.rays.size() && !tiles_data[ v.rays[i].tile ].open; ++i){} + for( i=0; i<v.rays.size() && tiles_data[ v.rays[i].tile ].state!=0; ++i){} + + //if there are only openings: + if (i == v.rays.size() ){ +// std::printf("only openings!\n"); + event.insert_at = contextRanking(pos.min()); + } + //if there is at least one closing: make it first, and catch 'insert_at'. + else{ +// std::printf("not only openings\n"); + if( i > 0 ){ + std::vector<Ray> head; + head.assign ( v.rays.begin(), v.rays.begin()+i ); + v.rays.erase ( v.rays.begin(), v.rays.begin()+i ); + v.rays.insert( v.rays.end(), head.begin(), head.end()); + } + //assert( tiles_data[ v.rays[0].tile ].open ); + assert( tiles_data[ v.rays[0].tile ].state==0 ); + event.insert_at = context.find( v.rays.front().tile )+1; +// event.erase_at = context.find( v.rays.front().tile ); +// std::printf("at least one closing!\n"); + } + context.pending_vertex = v; + }else{ +// std::printf("continue biting exiting vertex\n"); + event.tile = context.pending_vertex.rays.front().tile; + event.insert_at = old_event.insert_at; +// if (old_event.opening){ +// event.insert_at++; +// }else{ +// if (old_event.erase_at < old_event.insert_at){ +// event.insert_at--; +// } +// } + event.insert_at++; + } + event.tile = context.pending_vertex.rays.front().tile; +// event.opening = !tiles_data[ event.tile ].open; + event.opening = tiles_data[ event.tile ].state!=0; + event.to_be_continued = context.pending_vertex.rays.size()>1; +// if ( !event.opening ) event.erase_at = context.find(event.tile); + + context.pending_vertex.rays.erase(context.pending_vertex.rays.begin()); + context.pending_event = event; +// printEvent(event); + return event; + } +}; + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4:fileencoding=utf-8:textwidth=99 : |