/** * \file * \brief Bezier curve *//* * Authors: * MenTaLguY * Marco Cecchetti * Krzysztof KosiƄski * * Copyright 2007-2011 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef LIB2GEOM_SEEN_BEZIER_CURVE_H #define LIB2GEOM_SEEN_BEZIER_CURVE_H #include <2geom/curve.h> #include <2geom/sbasis-curve.h> // for non-native winding method #include <2geom/bezier.h> #include <2geom/transforms.h> namespace Geom { class BezierCurve : public Curve { protected: D2 inner; BezierCurve() {} BezierCurve(Bezier const &x, Bezier const &y) : inner(x, y) {} BezierCurve(std::vector const &pts); public: explicit BezierCurve(D2 const &b) : inner(b) {} /// @name Access and modify control points /// @{ /** @brief Get the order of the Bezier curve. * A Bezier curve has order() + 1 control points. */ unsigned order() const { return inner[X].order(); } /** @brief Get the number of control points. */ unsigned size() const { return inner[X].order() + 1; } /** @brief Access control points of the curve. * @param ix The (zero-based) index of the control point. Note that the caller is responsible for checking that this value is <= order(). * @return The control point. No-reference return, use setPoint() to modify control points. */ Point controlPoint(unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); } Point operator[](unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); } /** @brief Get the control points. * @return Vector with order() + 1 control points. */ std::vector controlPoints() const { return bezier_points(inner); } D2 const &fragment() const { return inner; } /** @brief Modify a control point. * @param ix The zero-based index of the point to modify. Note that the caller is responsible for checking that this value is <= order(). * @param v The new value of the point */ void setPoint(unsigned ix, Point const &v) { inner[X][ix] = v[X]; inner[Y][ix] = v[Y]; } /** @brief Set new control points. * @param ps Vector which must contain order() + 1 points. * Note that the caller is responsible for checking the size of this vector. * @throws LogicalError Thrown when the size of the vector does not match the order. */ virtual void setPoints(std::vector const &ps) { // must be virtual, because HLineSegment will need to redefine it if (ps.size() != order() + 1) THROW_LOGICALERROR("BezierCurve::setPoints: incorrect number of points in vector"); for(unsigned i = 0; i <= order(); i++) { setPoint(i, ps[i]); } } /// @} /// @name Construct a Bezier curve with runtime-determined order. /// @{ /** @brief Construct a curve from a vector of control points. * This will construct the appropriate specialization of BezierCurve (i.e. LineSegment, * QuadraticBezier or Cubic Bezier) if the number of control points in the passed vector * does not exceed 4. */ static BezierCurve *create(std::vector const &pts); /// @} // implementation of virtual methods goes here Point initialPoint() const override { return inner.at0(); } Point finalPoint() const override { return inner.at1(); } bool isDegenerate() const override; bool isLineSegment() const override; void setInitial(Point const &v) override { setPoint(0, v); } void setFinal(Point const &v) override { setPoint(order(), v); } Rect boundsFast() const override { return *bounds_fast(inner); } Rect boundsExact() const override { return *bounds_exact(inner); } void expandToTransformed(Rect &bbox, Affine const &transform) const override; OptRect boundsLocal(OptInterval const &i, unsigned deg) const override { if (!i) return OptRect(); if(i->min() == 0 && i->max() == 1) return boundsFast(); if(deg == 0) return bounds_local(inner, i); // TODO: UUUUUUGGGLLY if(deg == 1 && order() > 1) return OptRect(bounds_local(Geom::derivative(inner[X]), i), bounds_local(Geom::derivative(inner[Y]), i)); return OptRect(); } Curve *duplicate() const override { return new BezierCurve(*this); } Curve *portion(Coord f, Coord t) const override; Curve *reverse() const override { return new BezierCurve(Geom::reverse(inner)); } using Curve::operator*=; void operator*=(Translate const &tr) override { for (unsigned i = 0; i < size(); ++i) { inner[X][i] += tr[X]; inner[Y][i] += tr[Y]; } } void operator*=(Scale const &s) override { for (unsigned i = 0; i < size(); ++i) { inner[X][i] *= s[X]; inner[Y][i] *= s[Y]; } } void operator*=(Affine const &m) override { for (unsigned i = 0; i < size(); ++i) { setPoint(i, controlPoint(i) * m); } } Curve *derivative() const override { return new BezierCurve(Geom::derivative(inner[X]), Geom::derivative(inner[Y])); } int degreesOfFreedom() const override { return 2 * (order() + 1); } std::vector roots(Coord v, Dim2 d) const override { return (inner[d] - v).roots(); } Coord nearestTime(Point const &p, Coord from = 0, Coord to = 1) const override; Coord length(Coord tolerance) const override; std::vector intersect(Curve const &other, Coord eps = EPSILON) const override; Point pointAt(Coord t) const override { return inner.pointAt(t); } std::vector pointAndDerivatives(Coord t, unsigned n) const override { return inner.valueAndDerivatives(t, n); } Coord valueAt(Coord t, Dim2 d) const override { return inner[d].valueAt(t); } D2 toSBasis() const override {return inner.toSBasis(); } bool isNear(Curve const &c, Coord precision) const override; bool operator==(Curve const &c) const override; void feed(PathSink &sink, bool) const override; }; template class BezierCurveN : public BezierCurve { template static void assert_degree(BezierCurveN const *) {} public: /// @name Construct Bezier curves /// @{ /** @brief Construct a Bezier curve of the specified order with all points zero. */ BezierCurveN() { inner = D2(Bezier(Bezier::Order(degree)), Bezier(Bezier::Order(degree))); } /** @brief Construct from 2D Bezier polynomial. */ explicit BezierCurveN(D2 const &x) { inner = x; } /** @brief Construct from two 1D Bezier polynomials of the same order. */ BezierCurveN(Bezier x, Bezier y) { inner = D2 (x,y); } /** @brief Construct a Bezier curve from a vector of its control points. */ BezierCurveN(std::vector const &points) { unsigned ord = points.size() - 1; if (ord != degree) THROW_LOGICALERROR("BezierCurve does not match number of points"); for (unsigned d = 0; d < 2; ++d) { inner[d] = Bezier(Bezier::Order(ord)); for(unsigned i = 0; i <= ord; i++) inner[d][i] = points[i][d]; } } /** @brief Construct a linear segment from its endpoints. */ BezierCurveN(Point c0, Point c1) { assert_degree<1>(this); for(unsigned d = 0; d < 2; d++) inner[d] = Bezier(c0[d], c1[d]); } /** @brief Construct a quadratic Bezier curve from its control points. */ BezierCurveN(Point c0, Point c1, Point c2) { assert_degree<2>(this); for(unsigned d = 0; d < 2; d++) inner[d] = Bezier(c0[d], c1[d], c2[d]); } /** @brief Construct a cubic Bezier curve from its control points. */ BezierCurveN(Point c0, Point c1, Point c2, Point c3) { assert_degree<3>(this); for(unsigned d = 0; d < 2; d++) inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]); } // default copy // default assign /// @} /** @brief Divide a Bezier curve into two curves * @param t Time value * @return Pair of Bezier curves \f$(\mathbf{D}, \mathbf{E})\f$ such that * \f$\mathbf{D}[ [0,1] ] = \mathbf{C}[ [0,t] ]\f$ and * \f$\mathbf{E}[ [0,1] ] = \mathbf{C}[ [t,1] ]\f$ */ std::pair subdivide(Coord t) const { std::pair sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t); return std::make_pair( BezierCurveN(sx.first, sy.first), BezierCurveN(sx.second, sy.second)); } bool isDegenerate() const override { return BezierCurve::isDegenerate(); } bool isLineSegment() const override { if constexpr (degree == 1) { return true; } else { return BezierCurve::isLineSegment(); } } Curve *duplicate() const override { return new BezierCurveN(*this); } Curve *portion(Coord f, Coord t) const override { if (degree == 1) { return new BezierCurveN<1>(pointAt(f), pointAt(t)); } else { return new BezierCurveN(Geom::portion(inner, f, t)); } } Curve *reverse() const override { if (degree == 1) { return new BezierCurveN<1>(finalPoint(), initialPoint()); } else { return new BezierCurveN(Geom::reverse(inner)); } } Curve *derivative() const override; Coord nearestTime(Point const &p, Coord from = 0, Coord to = 1) const override { return BezierCurve::nearestTime(p, from, to); } std::vector intersect(Curve const &other, Coord eps = EPSILON) const override { // call super. this is implemented only to allow specializations return BezierCurve::intersect(other, eps); } int winding(Point const &p) const override { return Curve::winding(p); } void feed(PathSink &sink, bool moveto_initial) const override { // call super. this is implemented only to allow specializations BezierCurve::feed(sink, moveto_initial); } void expandToTransformed(Rect &bbox, Affine const &transform) const override { // call super. this is implemented only to allow specializations BezierCurve::expandToTransformed(bbox, transform); } }; // BezierCurveN<0> is meaningless; specialize it out template<> class BezierCurveN<0> : public BezierCurveN<1> { private: BezierCurveN();}; /** @brief Line segment. * Line segments are Bezier curves of order 1. They have only two control points, * the starting point and the ending point. * @ingroup Curves */ typedef BezierCurveN<1> LineSegment; /** @brief Quadratic (order 2) Bezier curve. * @ingroup Curves */ typedef BezierCurveN<2> QuadraticBezier; /** @brief Cubic (order 3) Bezier curve. * @ingroup Curves */ typedef BezierCurveN<3> CubicBezier; template inline Curve *BezierCurveN::derivative() const { return new BezierCurveN(Geom::derivative(inner[X]), Geom::derivative(inner[Y])); } // optimized specializations template <> inline bool BezierCurveN<1>::isDegenerate() const { return inner[X][0] == inner[X][1] && inner[Y][0] == inner[Y][1]; } template <> inline bool BezierCurveN<1>::isLineSegment() const { return true; } template <> Curve *BezierCurveN<1>::derivative() const; template <> Coord BezierCurveN<1>::nearestTime(Point const &, Coord, Coord) const; template <> std::vector BezierCurveN<1>::intersect(Curve const &, Coord) const; template <> std::vector BezierCurveN<2>::intersect(Curve const &, Coord) const; template <> std::vector BezierCurveN<3>::intersect(Curve const &, Coord) const; template <> int BezierCurveN<1>::winding(Point const &) const; template <> void BezierCurveN<1>::feed(PathSink &sink, bool moveto_initial) const; template <> void BezierCurveN<2>::feed(PathSink &sink, bool moveto_initial) const; template <> void BezierCurveN<3>::feed(PathSink &sink, bool moveto_initial) const; template <> void BezierCurveN<1>::expandToTransformed(Rect &bbox, Affine const &transform) const; template <> void BezierCurveN<2>::expandToTransformed(Rect &bbox, Affine const &transform) const; template <> void BezierCurveN<3>::expandToTransformed(Rect &bbox, Affine const &transform) const; inline Point middle_point(LineSegment const& _segment) { return ( _segment.initialPoint() + _segment.finalPoint() ) / 2; } inline Coord length(LineSegment const& seg) { return distance(seg.initialPoint(), seg.finalPoint()); } Coord bezier_length(std::vector const &points, Coord tolerance = 0.01); Coord bezier_length(Point p0, Point p1, Point p2, Coord tolerance = 0.01); Coord bezier_length(Point p0, Point p1, Point p2, Point p3, Coord tolerance = 0.01); } // end namespace Geom #endif // LIB2GEOM_SEEN_BEZIER_CURVE_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :