/** * \file * \brief Calculation of binomial cefficients *//* * Copyright 2006 Nathan Hurst * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * */ #ifndef LIB2GEOM_SEEN_CHOOSE_H #define LIB2GEOM_SEEN_CHOOSE_H #include namespace Geom { /** * @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n + 1, k). */ template constexpr void binomial_increment_n(T &b, int n, int k) { b = b * (n + 1) / (n + 1 - k); } /** * @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n - 1, k). */ template constexpr void binomial_decrement_n(T &b, int n, int k) { b = b * (n - k) / n; } /** * @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n, k + 1). */ template constexpr void binomial_increment_k(T &b, int n, int k) { b = b * (n - k) / (k + 1); } /** * @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n, k - 1). */ template constexpr void binomial_decrement_k(T &b, int n, int k) { b = b * k / (n + 1 - k); } /** * @brief Calculate the (n, k)th binomial coefficient. */ template constexpr T choose(unsigned n, unsigned k) { if (k > n) { return 0; } T b = 1; int max = std::min(k, n - k); for (int i = 0; i < max; i++) { binomial_increment_k(b, n, i); } return b; } /** * @brief Class for calculating and accessing a row of Pascal's triangle. */ template class BinomialCoefficient { public: using value_type = ValueType; using container_type = std::vector; BinomialCoefficient(unsigned int _n) : n(_n) { coefficients.reserve(n / 2 + 1); coefficients.emplace_back(1); value_type b = 1; for (int i = 0; i < n / 2; i++) { binomial_increment_k(b, n, i); coefficients.emplace_back(b); } } unsigned int size() const { return degree() + 1; } unsigned int degree() const { return n; } value_type operator[](unsigned int k) const { return coefficients[std::min(k, n - k)]; } private: int const n; container_type coefficients; }; } // namespace Geom #endif // LIB2GEOM_SEEN_CHOOSE_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :