/** @file * @brief Convex hull data structures *//* * Copyright 2006 Nathan Hurst * Copyright 2006 Michael G. Sloan * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * */ #ifndef LIB2GEOM_SEEN_CONVEX_HULL_H #define LIB2GEOM_SEEN_CONVEX_HULL_H #include <2geom/point.h> #include <2geom/rect.h> #include #include #include #include #include namespace Geom { namespace { /** @brief Iterator for the lower convex hull. * This iterator allows us to avoid duplicating any points in the hull * boundary and still express most algorithms in a concise way. */ class ConvexHullLowerIterator : public boost::random_access_iterator_helper < ConvexHullLowerIterator , Point , std::ptrdiff_t , Point const * , Point const & > { public: typedef ConvexHullLowerIterator Self; ConvexHullLowerIterator() : _data(NULL) , _size(0) , _x(0) {} ConvexHullLowerIterator(std::vector const &pts, std::size_t x) : _data(&pts[0]) , _size(pts.size()) , _x(x) {} Self &operator++() { *this += 1; return *this; } Self &operator--() { *this -= 1; return *this; } Self &operator+=(std::ptrdiff_t d) { _x += d; return *this; } Self &operator-=(std::ptrdiff_t d) { _x -= d; return *this; } std::ptrdiff_t operator-(Self const &other) const { return _x - other._x; } Point const &operator*() const { if (_x < _size) { return _data[_x]; } else { return *_data; } } bool operator==(Self const &other) const { return _data == other._data && _x == other._x; } bool operator<(Self const &other) const { return _data == other._data && _x < other._x; } private: Point const *_data; std::size_t _size; std::size_t _x; }; } // end anonymous namespace /** * @brief Convex hull based on the Andrew's monotone chain algorithm. * @ingroup Shapes */ class ConvexHull { public: typedef std::vector::const_iterator iterator; typedef std::vector::const_iterator const_iterator; typedef std::vector::const_iterator UpperIterator; typedef ConvexHullLowerIterator LowerIterator; /// @name Construct a convex hull. /// @{ /// Create an empty convex hull. ConvexHull() {} /// Construct a singular convex hull. explicit ConvexHull(Point const &a) : _boundary(1, a) , _lower(1) {} /// Construct a convex hull of two points. ConvexHull(Point const &a, Point const &b); /// Construct a convex hull of three points. ConvexHull(Point const &a, Point const &b, Point const &c); /// Construct a convex hull of four points. ConvexHull(Point const &a, Point const &b, Point const &c, Point const &d); /// Create a convex hull of a vector of points. ConvexHull(std::vector const &pts); /// Create a convex hull of a range of points. template ConvexHull(Iter first, Iter last) : _lower(0) { _prune(first, last, _boundary); _construct(); } /// @} /// @name Inspect basic properties. /// @{ /// Check for emptiness. bool empty() const { return _boundary.empty(); } /// Get the number of points in the hull. size_t size() const { return _boundary.size(); } /// Check whether the hull contains only one point. bool isSingular() const { return _boundary.size() == 1; } /// Check whether the hull is a line. bool isLinear() const { return _boundary.size() == 2; } /// Check whether the hull has zero area. bool isDegenerate() const { return _boundary.size() < 3; } /// Calculate the area of the convex hull. double area() const; //Point centroid() const; //double areaAndCentroid(Point &c); //FatLine maxDiameter() const; //FatLine minDiameter() const; /// @} /// @name Inspect bounds and extreme points. /// @{ /// Compute the bounding rectangle of the convex hull. OptRect bounds() const; /// Get the leftmost (minimum X) coordinate of the hull. Coord left() const { return _boundary[0][X]; } /// Get the rightmost (maximum X) coordinate of the hull. Coord right() const { return _boundary[_lower-1][X]; } /// Get the topmost (minimum Y) coordinate of the hull. Coord top() const { return topPoint()[Y]; } /// Get the bottommost (maximum Y) coordinate of the hull. Coord bottom() const { return bottomPoint()[Y]; } /// Get the leftmost (minimum X) point of the hull. /// If the leftmost edge is vertical, the top point of the edge is returned. Point leftPoint() const { return _boundary[0]; } /// Get the rightmost (maximum X) point of the hull. /// If the rightmost edge is vertical, the bottom point edge is returned. Point rightPoint() const { return _boundary[_lower-1]; } /// Get the topmost (minimum Y) point of the hull. /// If the topmost edge is horizontal, the right point of the edge is returned. Point topPoint() const; /// Get the bottommost (maximum Y) point of the hull. /// If the bottommost edge is horizontal, the left point of the edge is returned. Point bottomPoint() const; ///@} /// @name Iterate over points. /// @{ /** @brief Get the begin iterator to the points that form the hull. * Points are returned beginning with the leftmost one, going along * the upper (minimum Y) side, and then along the bottom. * Thus the points are always ordered clockwise. No point is * repeated. */ iterator begin() const { return _boundary.begin(); } /// Get the end iterator to the points that form the hull. iterator end() const { return _boundary.end(); } /// Get the first, leftmost point in the hull. Point const &front() const { return _boundary.front(); } /// Get the penultimate point of the lower hull. Point const &back() const { return _boundary.back(); } Point const &operator[](std::size_t i) const { return _boundary[i]; } /** @brief Get an iterator range to the upper part of the hull. * This returns a range that includes the leftmost point, * all points of the upper hull, and the rightmost point. */ boost::iterator_range upperHull() const { boost::iterator_range r(_boundary.begin(), _boundary.begin() + _lower); return r; } /** @brief Get an iterator range to the lower part of the hull. * This returns a range that includes the leftmost point, * all points of the lower hull, and the rightmost point. */ boost::iterator_range lowerHull() const { if (_boundary.empty()) { boost::iterator_range r(LowerIterator(_boundary, 0), LowerIterator(_boundary, 0)); return r; } if (_boundary.size() == 1) { boost::iterator_range r(LowerIterator(_boundary, 0), LowerIterator(_boundary, 1)); return r; } boost::iterator_range r(LowerIterator(_boundary, _lower - 1), LowerIterator(_boundary, _boundary.size() + 1)); return r; } /// @} /// @name Check for containment and intersection. /// @{ /** @brief Check whether the given point is inside the hull. * This takes logarithmic time. */ bool contains(Point const &p) const; /** @brief Check whether the given axis-aligned rectangle is inside the hull. * A rectangle is inside the hull if all of its corners are inside. */ bool contains(Rect const &r) const; /// Check whether the given convex hull is completely contained in this one. bool contains(ConvexHull const &other) const; //bool interiorContains(Point const &p) const; //bool interiorContains(Rect const &r) const; //bool interiorContains(ConvexHull const &other) const; //bool intersects(Rect const &r) const; //bool intersects(ConvexHull const &other) const; //ConvexHull &operator|=(ConvexHull const &other); //ConvexHull &operator&=(ConvexHull const &other); //ConvexHull &operator*=(Affine const &m); //ConvexHull &expand(Point const &p); //void unifyWith(ConvexHull const &other); //void intersectWith(ConvexHull const &other); /// @} void swap(ConvexHull &other); void swap(std::vector &pts); private: void _construct(); static bool _is_clockwise_turn(Point const &a, Point const &b, Point const &c); /// Take a vector of points and produce a pruned sorted vector. template static void _prune(Iter first, Iter last, std::vector &out) { std::optional ymin, ymax, xmin, xmax; for (Iter i = first; i != last; ++i) { Point p = *i; if (!ymin || Point::LexLess()(p, *ymin)) { ymin = p; } if (!xmin || Point::LexLess()(p, *xmin)) { xmin = p; } if (!ymax || Point::LexGreater()(p, *ymax)) { ymax = p; } if (!xmax || Point::LexGreater()(p, *xmax)) { xmax = p; } } if (!ymin) return; ConvexHull qhull(*xmin, *xmax, *ymin, *ymax); for (Iter i = first; i != last; ++i) { if (qhull.contains(*i)) continue; out.push_back(*i); } out.push_back(*xmin); out.push_back(*xmax); out.push_back(*ymin); out.push_back(*ymax); std::sort(out.begin(), out.end(), Point::LexLess()); out.erase(std::unique(out.begin(), out.end()), out.end()); } /// Sequence of points forming the convex hull polygon. std::vector _boundary; /// Index one past the rightmost point, where the lower part of the boundary starts. std::size_t _lower; }; /** @brief Output operator for convex hulls. * Prints out all the coordinates. */ inline std::ostream &operator<< (std::ostream &out_file, const Geom::ConvexHull &in_cvx) { out_file << "ConvexHull("; for(auto i : in_cvx) { out_file << i << ", "; } out_file << ")"; return out_file; } } // end namespace Geom #endif // LIB2GEOM_SEEN_CONVEX_HULL_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :