/** * \file * \brief Simple closed interval class *//* * Copyright 2007 Michael Sloan * * Original Rect/Range code by: * Lauris Kaplinski * Nathan Hurst * bulia byak * MenTaLguY * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, output to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * */ #ifndef LIB2GEOM_SEEN_INTERVAL_H #define LIB2GEOM_SEEN_INTERVAL_H #include #include #include <2geom/coord.h> #include <2geom/math-utils.h> #include <2geom/generic-interval.h> #include <2geom/int-interval.h> namespace Geom { /** * @brief Range of real numbers that is never empty. * * Intervals are closed ranges \f$[a, b]\f$, which means they include their endpoints. * To use them as open ranges, you can use the interiorContains() methods. * * @ingroup Primitives */ class Interval : public GenericInterval { typedef GenericInterval Base; public: /// @name Create intervals. /// @{ /** @brief Create an interval that contains only zero. */ Interval() {} /** @brief Create an interval that contains a single point. */ explicit Interval(Coord u) : Base(u) {} /** @brief Create an interval that contains all points between @c u and @c v. */ Interval(Coord u, Coord v) : Base(u,v) {} /** @brief Convert from integer interval */ Interval(IntInterval const &i) : Base(i.min(), i.max()) {} Interval(Base const &b) : Base(b) {} /** @brief Create an interval containing a range of values. * The resulting interval will contain all values from the given range. * The return type of iterators must be convertible to Coord. The given range * must not be empty. For potentially empty ranges, see OptInterval. * @param start Beginning of the range * @param end End of the range * @return Interval that contains all values from [start, end). */ template static Interval from_range(InputIterator start, InputIterator end) { Interval result = Base::from_range(start, end); return result; } /** @brief Create an interval from a C-style array of values it should contain. */ static Interval from_array(Coord const *c, unsigned n) { Interval result = from_range(c, c+n); return result; } /// @} /// @name Inspect contained values. /// @{ /// Check whether both endpoints are finite. bool isFinite() const { return std::isfinite(min()) && std::isfinite(max()); } /** @brief Map the interval [0,1] onto this one. * This method simply performs 1D linear interpolation between endpoints. */ Coord valueAt(Coord t) const { return lerp(t, min(), max()); } /** @brief Compute a time value that maps to the given value. * The supplied value does not need to be in the interval for this method to work. */ Coord timeAt(Coord v) const { return (v - min()) / extent(); } /// Find closest time in [0,1] that maps to the given value. */ Coord nearestTime(Coord v) const { if (v <= min()) return 0; if (v >= max()) return 1; return timeAt(v); } /// @} /// @name Test coordinates and other intervals for inclusion. /// @{ /** @brief Check whether the interior of the interval includes this number. * Interior means all numbers in the interval except its ends. */ bool interiorContains(Coord val) const { return min() < val && val < max(); } /** @brief Check whether the interior of the interval includes the given interval. * Interior means all numbers in the interval except its ends. */ bool interiorContains(Interval const &val) const { return min() < val.min() && val.max() < max(); } /// Check whether the number is contained in the union of the interior and the lower boundary. bool lowerContains(Coord val) const { return min() <= val && val < max(); } /// Check whether the given interval is contained in the union of the interior and the lower boundary. bool lowerContains(Interval const &val) const { return min() <= val.min() && val.max() < max(); } /// Check whether the number is contained in the union of the interior and the upper boundary. bool upperContains(Coord val) { return min() < val && val <= max(); } /// Check whether the given interval is contained in the union of the interior and the upper boundary. bool upperContains(Interval const &val) const { return min() < val.min() && val.max() <= max(); } /** @brief Check whether the interiors of the intervals have any common elements. * A single point in common is not considered an intersection. */ bool interiorIntersects(Interval const &val) const { return std::max(min(), val.min()) < std::min(max(), val.max()); } /// @} /// @name Operators /// @{ // IMPL: ScalableConcept /** @brief Scale an interval */ Interval &operator*=(Coord s) { using std::swap; _b[0] *= s; _b[1] *= s; if(s < 0) swap(_b[0], _b[1]); return *this; } /** @brief Scale an interval by the inverse of the specified value */ Interval &operator/=(Coord s) { using std::swap; _b[0] /= s; _b[1] /= s; if(s < 0) swap(_b[0], _b[1]); return *this; } /** @brief Multiply two intervals. * Product is defined as the set of points that can be obtained by multiplying * any value from the second operand by any value from the first operand: * \f$S = \{x \in A, y \in B: x * y\}\f$ */ Interval &operator*=(Interval const &o) { // TODO implement properly Coord mn = min(), mx = max(); expandTo(mn * o.min()); expandTo(mn * o.max()); expandTo(mx * o.min()); expandTo(mx * o.max()); return *this; } bool operator==(IntInterval const &ii) const { return min() == Coord(ii.min()) && max() == Coord(ii.max()); } bool operator==(Interval const &other) const { return Base::operator==(other); } /// @} /// @name Rounding to integer values /// @{ /** @brief Return the smallest integer interval which contains this one. */ IntInterval roundOutwards() const { IntInterval ret(floor(min()), ceil(max())); return ret; } /** @brief Return the largest integer interval which is contained in this one. */ OptIntInterval roundInwards() const { IntCoord u = ceil(min()), v = floor(max()); if (u > v) { OptIntInterval e; return e; } IntInterval ret(u, v); return ret; } /// @} }; /** * @brief Range of real numbers that can be empty. * @ingroup Primitives */ class OptInterval : public GenericOptInterval { typedef GenericOptInterval Base; public: using Base::Base; using Base::operator==; using Base::operator!=; OptInterval(Base const &b) : Base(b) {} /** @brief Promote from IntInterval. */ OptInterval(IntInterval const &i) : Base(Interval(i)) {} /** @brief Promote from OptIntInterval. */ OptInterval(OptIntInterval const &i) : Base() { if (i) *this = Interval(*i); } }; // functions required for Python bindings inline Interval unify(Interval const &a, Interval const &b) { Interval r = a | b; return r; } inline OptInterval intersect(Interval const &a, Interval const &b) { OptInterval r = a & b; return r; } } // end namespace Geom #endif //SEEN_INTERVAL_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :