/** * \file * \brief Infinite straight line *//* * Authors: * Marco Cecchetti * Krzysztof KosiƄski * Copyright 2008-2011 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef LIB2GEOM_SEEN_LINE_H #define LIB2GEOM_SEEN_LINE_H #include #include #include <2geom/bezier-curve.h> // for LineSegment #include <2geom/rect.h> #include <2geom/crossing.h> #include <2geom/exception.h> #include <2geom/ray.h> #include <2geom/angle.h> #include <2geom/intersection.h> namespace Geom { // class docs in cpp file class Line : boost::equality_comparable< Line > { private: Point _initial; Point _final; public: /// @name Creating lines. /// @{ /** @brief Create a default horizontal line. * Creates a line with unit speed going in +X direction. */ Line() : _initial(0,0), _final(1,0) {} /** @brief Create a line with the specified inclination. * @param origin One of the points on the line * @param angle Angle of the line in mathematical convention */ Line(Point const &origin, Coord angle) : _initial(origin) { Point v; sincos(angle, v[Y], v[X]); _final = _initial + v; } /** @brief Create a line going through two points. * The first point will be at time 0, while the second one * will be at time 1. * @param a Initial point * @param b First point */ Line(Point const &a, Point const &b) : _initial(a) , _final(b) {} /** @brief Create a line based on the coefficients of its equation. @see Line::setCoefficients() */ Line(double a, double b, double c) { setCoefficients(a, b, c); } /// Create a line by extending a line segment. explicit Line(LineSegment const &seg) : _initial(seg.initialPoint()) , _final(seg.finalPoint()) {} /// Create a line by extending a ray. explicit Line(Ray const &r) : _initial(r.origin()) , _final(r.origin() + r.vector()) {} /// Create a line normal to a vector at a specified distance from origin. static Line from_normal_distance(Point const &n, Coord c) { Point start = c * n.normalized(); Line l(start, start + rot90(n)); return l; } /** @brief Create a line from origin and unit vector. * Note that each line direction has two possible unit vectors. * @param o Point through which the line will pass * @param v Unit vector of the line's direction */ static Line from_origin_and_vector(Point const &o, Point const &v) { Line l(o, o + v); return l; } Line* duplicate() const { return new Line(*this); } /// @} /// @name Retrieve and set the line's parameters. /// @{ /// Get the line's origin point. Point origin() const { return _initial; } /** @brief Get the line's raw direction vector. * The length of the retrieved vector is equal to the length of a segment parametrized by * a time interval of length 1. */ Point vector() const { return _final - _initial; } /** @brief Get the line's normalized direction vector. * The retrieved vector is normalized to unit length. */ Point versor() const { return (_final - _initial).normalized(); } /// Angle the line makes with the X axis, in mathematical convention. Coord angle() const { Point d = _final - _initial; double a = std::atan2(d[Y], d[X]); if (a < 0) a += M_PI; if (a == M_PI) a = 0; return a; } /** @brief Set the point at zero time. * The orientation remains unchanged, modulo numeric errors during addition. */ void setOrigin(Point const &p) { Point d = p - _initial; _initial = p; _final += d; } /** @brief Set the speed of the line. * Origin remains unchanged. */ void setVector(Point const &v) { _final = _initial + v; } /** @brief Set the angle the line makes with the X axis. * Origin remains unchanged. */ void setAngle(Coord angle) { Point v; sincos(angle, v[Y], v[X]); v *= distance(_initial, _final); _final = _initial + v; } /// Set a line based on two points it should pass through. void setPoints(Point const &a, Point const &b) { _initial = a; _final = b; } /** @brief Set the coefficients of the line equation. * The line equation is: \f$ax + by = c\f$. Points that satisfy the equation * are on the line. */ void setCoefficients(double a, double b, double c); /** @brief Get the coefficients of the line equation as a vector. * @return STL vector @a v such that @a v[0] contains \f$a\f$, @a v[1] contains \f$b\f$, * and @a v[2] contains \f$c\f$. */ std::vector coefficients() const; /// Get the coefficients of the line equation by reference. void coefficients(Coord &a, Coord &b, Coord &c) const; /** @brief Check if the line has more than one point. * A degenerate line can be created if the line is created from a line equation * that has no solutions. * @return True if the line has no points or exactly one point */ bool isDegenerate() const { return _initial == _final; } /// Check if the line is horizontal (y is constant). bool isHorizontal() const { return _initial[Y] == _final[Y]; } /// Check if the line is vertical (x is constant). bool isVertical() const { return _initial[X] == _final[X]; } /** @brief Reparametrize the line so that it has unit speed. * Note that the direction of the line may also change. */ void normalize() { // this helps with the nasty case of a line that starts somewhere far // and ends very close to the origin if (L2sq(_final) < L2sq(_initial)) { std::swap(_initial, _final); } Point v = _final - _initial; v.normalize(); _final = _initial + v; } /** @brief Return a new line reparametrized for unit speed. */ Line normalized() const { Point v = _final - _initial; v.normalize(); Line ret(_initial, _initial + v); return ret; } /// @} /// @name Evaluate the line as a function. ///@{ Point initialPoint() const { return _initial; } Point finalPoint() const { return _final; } Point pointAt(Coord t) const { return lerp(t, _initial, _final);; } Coord valueAt(Coord t, Dim2 d) const { return lerp(t, _initial[d], _final[d]); } Coord timeAt(Point const &p) const; /** @brief Get a time value corresponding to a projection of a point on the line. * @param p Arbitrary point. * @return Time value corresponding to a point closest to @c p. */ Coord timeAtProjection(Point const& p) const { if ( isDegenerate() ) return 0; Point v = vector(); return dot(p - _initial, v) / dot(v, v); } /** @brief Find a point on the line closest to the query point. * This is an alias for timeAtProjection(). */ Coord nearestTime(Point const &p) const { return timeAtProjection(p); } std::vector roots(Coord v, Dim2 d) const; Coord root(Coord v, Dim2 d) const; /// @} /// @name Create other objects based on this line. /// @{ void reverse() { std::swap(_final, _initial); } /** @brief Create a line containing the same points, but in opposite direction. * @return Line \f$g\f$ such that \f$g(t) = f(1-t)\f$ */ Line reversed() const { Line result(_final, _initial); return result; } /** @brief Same as segment(), but allocate the line segment dynamically. */ // TODO remove this? Curve* portion(Coord f, Coord t) const { LineSegment* seg = new LineSegment(pointAt(f), pointAt(t)); return seg; } /** @brief Create a segment of this line. * @param f Time value for the initial point of the segment * @param t Time value for the final point of the segment * @return Created line segment */ LineSegment segment(Coord f, Coord t) const { return LineSegment(pointAt(f), pointAt(t)); } /// Return the portion of the line that is inside the given rectangle std::optional clip(Rect const &r) const; /** @brief Create a ray starting at the specified time value. * The created ray will go in the direction of the line's vector (in the direction * of increasing time values). * @param t Time value where the ray should start * @return Ray starting at t and going in the direction of the vector */ Ray ray(Coord t) { Ray result; result.setOrigin(pointAt(t)); result.setVector(vector()); return result; } /** @brief Create a derivative of the line. * The new line will always be degenerate. Its origin will be equal to this * line's vector. */ Line derivative() const { Point v = vector(); Line result(v, v); return result; } /// Create a line transformed by an affine transformation. Line transformed(Affine const& m) const { Line l(_initial * m, _final * m); return l; } /** @brief Get a unit vector normal to the line. * If Y grows upwards, then this is the left normal. If Y grows downwards, * then this is the right normal. */ Point normal() const { return rot90(vector()).normalized(); } // what does this do? Point normalAndDist(double & dist) const { Point n = normal(); dist = -dot(n, _initial); return n; } /// Compute an affine matrix representing a reflection about the line. Affine reflection() const { Point v = versor(); Coord x2 = v[X]*v[X], y2 = v[Y]*v[Y], xy = v[X]*v[Y]; Affine m(x2-y2, 2.*xy, 2.*xy, y2-x2, _initial[X], _initial[Y]); m = Translate(-_initial) * m; return m; } /** @brief Compute an affine which transforms all points on the line to zero X or Y coordinate. * This operation is useful in reducing intersection problems to root-finding problems. * There are many affines which do this transformation. This function returns one that * preserves angles, areas and distances - a rotation combined with a translation, and * additionally moves the initial point of the line to (0,0). This way it works without * problems even for lines perpendicular to the target, though may in some cases have * lower precision than e.g. a shear transform. * @param d Which coordinate of points on the line should be zero after the transformation */ Affine rotationToZero(Dim2 d) const { Point v = vector(); if (d == X) { std::swap(v[X], v[Y]); } else { v[Y] = -v[Y]; } Affine m = Translate(-_initial) * Rotate(v); return m; } /** @brief Compute a rotation affine which transforms the line to one of the axes. * @param d Which line should be the axis */ Affine rotationToAxis(Dim2 d) const { Affine m = rotationToZero(other_dimension(d)); return m; } Affine transformTo(Line const &other) const; /// @} std::vector intersect(Line const &other) const; std::vector intersect(Ray const &r) const; std::vector intersect(LineSegment const &ls) const; template Line &operator*=(T const &tr) { BOOST_CONCEPT_ASSERT((TransformConcept)); _initial *= tr; _final *= tr; return *this; } bool operator==(Line const &other) const { if (distance(pointAt(nearestTime(other._initial)), other._initial) != 0) return false; if (distance(pointAt(nearestTime(other._final)), other._final) != 0) return false; return true; } template friend Line operator*(Line const &l, T const &tr) { BOOST_CONCEPT_ASSERT((TransformConcept)); Line result(l); result *= tr; return result; } }; // end class Line /** @brief Removes intersections outside of the unit interval. * A helper used to implement line segment intersections. * @param xs Line intersections * @param a Whether the first time value has to be in the unit interval * @param b Whether the second time value has to be in the unit interval * @return Appropriately filtered intersections */ void filter_line_segment_intersections(std::vector &xs, bool a=false, bool b=true); void filter_ray_intersections(std::vector &xs, bool a=false, bool b=true); /// @brief Compute distance from point to line. /// @relates Line inline double distance(Point const &p, Line const &line) { if (line.isDegenerate()) { return ::Geom::distance(p, line.initialPoint()); } else { Coord t = line.nearestTime(p); return ::Geom::distance(line.pointAt(t), p); } } inline bool are_near(Point const &p, Line const &line, double eps = EPSILON) { return are_near(distance(p, line), 0, eps); } inline bool are_parallel(Line const &l1, Line const &l2, double eps = EPSILON) { return are_near(cross(l1.vector(), l2.vector()), 0, eps); } /** @brief Test whether two lines are approximately the same. * This tests for being parallel and the origin of one line being close to the other, * so it tests whether the images of the lines are similar, not whether the same time values * correspond to similar points. For example a line from (1,1) to (2,2) and a line from * (-1,-1) to (0,0) will be the same, because their images match, even though there is * no time value for which the lines give similar points. * @relates Line */ inline bool are_same(Line const &l1, Line const &l2, double eps = EPSILON) { return are_parallel(l1, l2, eps) && are_near(l1.origin(), l2, eps); } /// Test whether two lines are perpendicular. /// @relates Line inline bool are_orthogonal(Line const &l1, Line const &l2, double eps = EPSILON) { return are_near(dot(l1.vector(), l2.vector()), 0, eps); } // evaluate the angle between l1 and l2 rotating l1 in cw direction // until it overlaps l2 // the returned value is an angle in the interval [0, PI[ inline double angle_between(Line const& l1, Line const& l2) { double angle = angle_between(l1.vector(), l2.vector()); if (angle < 0) angle += M_PI; if (angle == M_PI) angle = 0; return angle; } inline double distance(Point const &p, LineSegment const &seg) { double t = seg.nearestTime(p); return distance(p, seg.pointAt(t)); } inline bool are_near(Point const &p, LineSegment const &seg, double eps = EPSILON) { return are_near(distance(p, seg), 0, eps); } // build a line passing by _point and orthogonal to _line inline Line make_orthogonal_line(Point const &p, Line const &line) { Point d = line.vector().cw(); Line l(p, p + d); return l; } // build a line passing by _point and parallel to _line inline Line make_parallel_line(Point const &p, Line const &line) { Line result(line); result.setOrigin(p); return result; } // build a line passing by the middle point of _segment and orthogonal to it. inline Line make_bisector_line(LineSegment const& _segment) { return make_orthogonal_line( middle_point(_segment), Line(_segment) ); } // build the bisector line of the angle between ray(O,A) and ray(O,B) inline Line make_angle_bisector_line(Point const &A, Point const &O, Point const &B) { AngleInterval ival(Angle(A-O), Angle(B-O)); Angle bisect = ival.angleAt(0.5); return Line(O, bisect); } // prj(P) = rot(v, Point( rot(-v, P-O)[X], 0 )) + O inline Point projection(Point const &p, Line const &line) { return line.pointAt(line.nearestTime(p)); } inline LineSegment projection(LineSegment const &seg, Line const &line) { return line.segment(line.nearestTime(seg.initialPoint()), line.nearestTime(seg.finalPoint())); } inline std::optional clip(Line const &l, Rect const &r) { return l.clip(r); } namespace detail { OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i); OptCrossing intersection_impl( LineSegment const& ls1, Line const& l2, unsigned int i ); OptCrossing intersection_impl( LineSegment const& ls1, Ray const& r2, unsigned int i ); } inline OptCrossing intersection(Ray const& r1, Line const& l2) { return detail::intersection_impl(r1, l2, 0); } inline OptCrossing intersection(Line const& l1, Ray const& r2) { return detail::intersection_impl(r2, l1, 1); } inline OptCrossing intersection(LineSegment const& ls1, Line const& l2) { return detail::intersection_impl(ls1, l2, 0); } inline OptCrossing intersection(Line const& l1, LineSegment const& ls2) { return detail::intersection_impl(ls2, l1, 1); } inline OptCrossing intersection(LineSegment const& ls1, Ray const& r2) { return detail::intersection_impl(ls1, r2, 0); } inline OptCrossing intersection(Ray const& r1, LineSegment const& ls2) { return detail::intersection_impl(ls2, r1, 1); } OptCrossing intersection(Line const& l1, Line const& l2); OptCrossing intersection(Ray const& r1, Ray const& r2); OptCrossing intersection(LineSegment const& ls1, LineSegment const& ls2); } // end namespace Geom #endif // LIB2GEOM_SEEN_LINE_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :