/** * \file * \brief Low level math functions and compatibility wrappers *//* * Authors: * Johan Engelen * Michael G. Sloan * Krzysztof KosiƄski * Copyright 2006-2009 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * */ #ifndef LIB2GEOM_SEEN_MATH_UTILS_H #define LIB2GEOM_SEEN_MATH_UTILS_H #include // sincos is usually only available in math.h #include #include #include // for std::pair #include namespace Geom { /** @brief Sign function - indicates the sign of a numeric type. * Mathsy people will know this is basically the derivative of abs, except for the fact * that it is defined on 0. * @return -1 when x is negative, 1 when positive, and 0 if equal to 0. */ template inline int sgn(const T& x) { return (x < 0 ? -1 : (x > 0 ? 1 : 0) ); // can we 'optimize' this with: // return ( (T(0) < x) - (x < T(0)) ); } template inline T sqr(const T& x) {return x * x;} template inline T cube(const T& x) {return x * x * x;} /** Between function - returns true if a number x is within a range: (min < x) && (max > x). * The values delimiting the range and the number must have the same type. */ template inline const T& between (const T& min, const T& max, const T& x) { return (min < x) && (max > x); } /** @brief Returns @a x rounded to the nearest multiple of \f$10^{p}\f$. Implemented in terms of round, i.e. we make no guarantees as to what happens if x is half way between two rounded numbers. Note: places is the number of decimal places without using scientific (e) notation, not the number of significant figures. This function may not be suitable for values of x whose magnitude is so far from 1 that one would want to use scientific (e) notation. places may be negative: e.g. places = -2 means rounding to a multiple of .01 **/ inline double decimal_round(double x, int p) { //TODO: possibly implement with modulus instead? double const multiplier = ::pow(10.0, p); return ::round( x * multiplier ) / multiplier; } /** @brief Simultaneously compute a sine and a cosine of the same angle. * This function can be up to 2 times faster than separate computation, depending * on the platform. It uses the standard library function sincos() if available. * @param angle Angle * @param sin_ Variable that will store the sine * @param cos_ Variable that will store the cosine */ inline void sincos(double angle, double &sin_, double &cos_) { #ifdef HAVE_SINCOS ::sincos(angle, &sin_, &cos_); #else sin_ = ::sin(angle); cos_ = ::cos(angle); #endif } /** @brief Scale the doubles in the passed array to make them "reasonably large". * * All doubles in the passed array will get scaled by the same power of 2 (which is * a lossless operation) in such a way that their geometric average gets closer to 1. * * @tparam N The size of the passed array. * @param[in,out] values The doubles to be rescaled in place. * @return The exponent in the power of two by which the doubles got scaled. */ template inline int rescale_homogenous(std::array &values) { if constexpr (N == 0) { return 0; } std::array exponents; std::array mantissas; int average = 0; for (size_t i = 0; i < N; i++) { mantissas[i] = std::frexp(values[i], &exponents[i]); average += exponents[i]; } average /= (int)N; for (size_t i = 0; i < N; i++) { values[i] = std::ldexp(mantissas[i], exponents[i] - average); } return -average; } } // end namespace Geom #endif // LIB2GEOM_SEEN_MATH_UTILS_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :