/** * \file * \brief Symmetric power basis curve *//* * Authors: * MenTaLguY * Marco Cecchetti * Krzysztof KosiƄski * * Copyright 2007-2009 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef LIB2GEOM_SEEN_SBASIS_CURVE_H #define LIB2GEOM_SEEN_SBASIS_CURVE_H #include <2geom/curve.h> #include <2geom/exception.h> #include <2geom/nearest-time.h> #include <2geom/sbasis-geometric.h> #include <2geom/transforms.h> namespace Geom { /** @brief Symmetric power basis curve. * * Symmetric power basis (S-basis for short) polynomials are a versatile numeric * representation of arbitrary continuous curves. They are the main representation of curves * in 2Geom. * * S-basis is defined for odd degrees and composed of the following polynomials: * \f{align*}{ P_k^0(t) &= t^k (1-t)^{k+1} \\ P_k^1(t) &= t^{k+1} (1-t)^k \f} * This can be understood more easily with the help of the chart below. Each square * represents a product of a specific number of \f$t\f$ and \f$(1-t)\f$ terms. Red dots * are the canonical (monomial) basis, the green dots are the Bezier basis, and the blue * dots are the S-basis, all of them of degree 7. * * @image html sbasis.png "Illustration of the monomial, Bezier and symmetric power bases" * * The S-Basis has several important properties: * - S-basis polynomials are closed under multiplication. * - Evaluation is fast, using a modified Horner scheme. * - Degree change is as trivial as in the monomial basis. To elevate, just add extra * zero coefficients. To reduce the degree, truncate the terms in the highest powers. * Compare this with Bezier curves, where degree change is complicated. * - Conversion between S-basis and Bezier basis is numerically stable. * * More in-depth information can be found in the following paper: * J Sanchez-Reyes, "The symmetric analogue of the polynomial power basis". * ACM Transactions on Graphics, Vol. 16, No. 3, July 1997, pages 319--357. * http://portal.acm.org/citation.cfm?id=256162 * * @ingroup Curves */ class SBasisCurve : public Curve { private: D2 inner; public: explicit SBasisCurve(D2 const &sb) : inner(sb) {} explicit SBasisCurve(Curve const &other) : inner(other.toSBasis()) {} Curve *duplicate() const override { return new SBasisCurve(*this); } Point initialPoint() const override { return inner.at0(); } Point finalPoint() const override { return inner.at1(); } bool isDegenerate() const override { return inner.isConstant(0); } bool isLineSegment() const override { return inner[X].size() == 1; } Point pointAt(Coord t) const override { return inner.valueAt(t); } std::vector pointAndDerivatives(Coord t, unsigned n) const override { return inner.valueAndDerivatives(t, n); } Coord valueAt(Coord t, Dim2 d) const override { return inner[d].valueAt(t); } void setInitial(Point const &v) override { for (unsigned d = 0; d < 2; d++) { inner[d][0][0] = v[d]; } } void setFinal(Point const &v) override { for (unsigned d = 0; d < 2; d++) { inner[d][0][1] = v[d]; } } Rect boundsFast() const override { return *bounds_fast(inner); } Rect boundsExact() const override { return *bounds_exact(inner); } void expandToTransformed(Rect &bbox, Affine const &transform) const override { bbox |= bounds_exact(inner * transform); } OptRect boundsLocal(OptInterval const &i, unsigned deg) const override { return bounds_local(inner, i, deg); } std::vector roots(Coord v, Dim2 d) const override { return Geom::roots(inner[d] - v); } Coord nearestTime( Point const& p, Coord from = 0, Coord to = 1 ) const override { return nearest_time(p, inner, from, to); } std::vector allNearestTimes( Point const& p, Coord from = 0, Coord to = 1 ) const override { return all_nearest_times(p, inner, from, to); } Coord length(Coord tolerance) const override { return ::Geom::length(inner, tolerance); } Curve *portion(Coord f, Coord t) const override { return new SBasisCurve(Geom::portion(inner, f, t)); } using Curve::operator*=; void operator*=(Affine const &m) override { inner = inner * m; } Curve *derivative() const override { return new SBasisCurve(Geom::derivative(inner)); } D2 toSBasis() const override { return inner; } bool operator==(Curve const &c) const override { SBasisCurve const *other = dynamic_cast(&c); if (!other) return false; return inner == other->inner; } bool isNear(Curve const &/*c*/, Coord /*eps*/) const override { THROW_NOTIMPLEMENTED(); return false; } int degreesOfFreedom() const override { return inner[0].degreesOfFreedom() + inner[1].degreesOfFreedom(); } }; } // end namespace Geom #endif // LIB2GEOM_SEEN_SBASIS_CURVE_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :