/** @file * @brief Polynomial in symmetric power basis (S-basis) *//* * Authors: * Nathan Hurst * Michael Sloan * * Copyright (C) 2006-2007 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef LIB2GEOM_SEEN_SBASIS_H #define LIB2GEOM_SEEN_SBASIS_H #include #include #include #include #include <2geom/linear.h> #include <2geom/interval.h> #include <2geom/utils.h> #include <2geom/exception.h> //#define USE_SBASISN 1 #if defined(USE_SBASIS_OF) #include "sbasis-of.h" #elif defined(USE_SBASISN) #include "sbasisN.h" namespace Geom{ /*** An empty SBasis is identically 0. */ class SBasis : public SBasisN<1>; }; #else namespace Geom { /** * @brief Polynomial in symmetric power basis * @ingroup Fragments */ class SBasis { std::vector d; void push_back(Linear const&l) { d.push_back(l); } public: // As part of our migration away from SBasis isa vector we provide this minimal set of vector interface methods. size_t size() const {return d.size();} typedef std::vector::iterator iterator; typedef std::vector::const_iterator const_iterator; Linear operator[](unsigned i) const { return d[i]; } Linear& operator[](unsigned i) { return d.at(i); } const_iterator begin() const { return d.begin();} const_iterator end() const { return d.end();} iterator begin() { return d.begin();} iterator end() { return d.end();} bool empty() const { return d.size() == 1 && d[0][0] == 0 && d[0][1] == 0; } Linear &back() {return d.back();} Linear const &back() const {return d.back();} void pop_back() { if (d.size() > 1) { d.pop_back(); } else { d[0][0] = 0; d[0][1] = 0; } } void resize(unsigned n) { d.resize(std::max(n, 1));} void resize(unsigned n, Linear const& l) { d.resize(std::max(n, 1), l);} void reserve(unsigned n) { d.reserve(n);} void clear() { d.resize(1); d[0][0] = 0; d[0][1] = 0; } void insert(iterator before, const_iterator src_begin, const_iterator src_end) { d.insert(before, src_begin, src_end);} Linear& at(unsigned i) { return d.at(i);} //void insert(Linear* before, int& n, Linear const &l) { d.insert(std::vector::iterator(before), n, l);} bool operator==(SBasis const&B) const { return d == B.d;} bool operator!=(SBasis const&B) const { return d != B.d;} SBasis() : d(1, Linear(0, 0)) {} explicit SBasis(double a) : d(1, Linear(a, a)) {} explicit SBasis(double a, double b) : d(1, Linear(a, b)) {} SBasis(SBasis const &a) : d(a.d) {} SBasis(std::vector ls) : d(std::move(ls)) {} SBasis(Linear const &bo) : d(1, bo) {} SBasis(Linear* bo) : d(1, bo ? *bo : Linear(0, 0)) {} explicit SBasis(size_t n, Linear const&l) : d(n, l) {} SBasis(Coord c0, Coord c1, Coord c2, Coord c3) : d(2) { d[0][0] = c0; d[1][0] = c1; d[1][1] = c2; d[0][1] = c3; } SBasis(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5) : d(3) { d[0][0] = c0; d[1][0] = c1; d[2][0] = c2; d[2][1] = c3; d[1][1] = c4; d[0][1] = c5; } SBasis(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5, Coord c6, Coord c7) : d(4) { d[0][0] = c0; d[1][0] = c1; d[2][0] = c2; d[3][0] = c3; d[3][1] = c4; d[2][1] = c5; d[1][1] = c6; d[0][1] = c7; } SBasis(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5, Coord c6, Coord c7, Coord c8, Coord c9) : d(5) { d[0][0] = c0; d[1][0] = c1; d[2][0] = c2; d[3][0] = c3; d[4][0] = c4; d[4][1] = c5; d[3][1] = c6; d[2][1] = c7; d[1][1] = c8; d[0][1] = c9; } // construct from a sequence of coefficients template SBasis(Iter first, Iter last) { assert(std::distance(first, last) % 2 == 0); assert(std::distance(first, last) >= 2); for (; first != last; ++first) { --last; push_back(Linear(*first, *last)); } } //IMPL: FragmentConcept typedef double output_type; inline bool isZero(double eps=EPSILON) const { assert(size() > 0); for(unsigned i = 0; i < size(); i++) { if(!(*this)[i].isZero(eps)) return false; } return true; } inline bool isConstant(double eps=EPSILON) const { assert(size() > 0); if(!(*this)[0].isConstant(eps)) return false; for (unsigned i = 1; i < size(); i++) { if(!(*this)[i].isZero(eps)) return false; } return true; } bool isFinite() const; inline Coord at0() const { return (*this)[0][0]; } inline Coord &at0() { return (*this)[0][0]; } inline Coord at1() const { return (*this)[0][1]; } inline Coord &at1() { return (*this)[0][1]; } int degreesOfFreedom() const { return size()*2;} double valueAt(double t) const { assert(size() > 0); double s = t*(1-t); double p0 = 0, p1 = 0; for(unsigned k = size(); k > 0; k--) { const Linear &lin = (*this)[k-1]; p0 = p0*s + lin[0]; p1 = p1*s + lin[1]; } return (1-t)*p0 + t*p1; } //double valueAndDerivative(double t, double &der) const { //} double operator()(double t) const { return valueAt(t); } std::vector valueAndDerivatives(double t, unsigned n) const; SBasis toSBasis() const { return SBasis(*this); } double tailError(unsigned tail) const; // compute f(g) SBasis operator()(SBasis const & g) const; //MUTATOR PRISON //remove extra zeros void normalize() { while(size() > 1 && back().isZero(0)) pop_back(); } void truncate(unsigned k) { if(k < size()) resize(std::max(k, 1)); } private: void derive(); // in place version }; //TODO: figure out how to stick this in linear, while not adding an sbasis dep inline SBasis Linear::toSBasis() const { return SBasis(*this); } //implemented in sbasis-roots.cpp OptInterval bounds_exact(SBasis const &a); OptInterval bounds_fast(SBasis const &a, int order = 0); OptInterval bounds_local(SBasis const &a, const OptInterval &t, int order = 0); /** Returns a function which reverses the domain of a. \param a sbasis function \relates SBasis useful for reversing a parameteric curve. */ inline SBasis reverse(SBasis const &a) { SBasis result(a.size(), Linear()); for(unsigned k = 0; k < a.size(); k++) result[k] = reverse(a[k]); return result; } //IMPL: ScalableConcept inline SBasis operator-(const SBasis& p) { if(p.isZero()) return SBasis(); SBasis result(p.size(), Linear()); for(unsigned i = 0; i < p.size(); i++) { result[i] = -p[i]; } return result; } SBasis operator*(SBasis const &a, double k); inline SBasis operator*(double k, SBasis const &a) { return a*k; } inline SBasis operator/(SBasis const &a, double k) { return a*(1./k); } SBasis& operator*=(SBasis& a, double b); inline SBasis& operator/=(SBasis& a, double b) { return (a*=(1./b)); } //IMPL: AddableConcept SBasis operator+(const SBasis& a, const SBasis& b); SBasis operator-(const SBasis& a, const SBasis& b); SBasis& operator+=(SBasis& a, const SBasis& b); SBasis& operator-=(SBasis& a, const SBasis& b); //TODO: remove? /*inline SBasis operator+(const SBasis & a, Linear const & b) { if(b.isZero()) return a; if(a.isZero()) return b; SBasis result(a); result[0] += b; return result; } inline SBasis operator-(const SBasis & a, Linear const & b) { if(b.isZero()) return a; SBasis result(a); result[0] -= b; return result; } inline SBasis& operator+=(SBasis& a, const Linear& b) { if(a.isZero()) a.push_back(b); else a[0] += b; return a; } inline SBasis& operator-=(SBasis& a, const Linear& b) { if(a.isZero()) a.push_back(-b); else a[0] -= b; return a; }*/ //IMPL: OffsetableConcept inline SBasis operator+(const SBasis & a, double b) { if(a.isZero()) return Linear(b, b); SBasis result(a); result[0] += b; return result; } inline SBasis operator-(const SBasis & a, double b) { if(a.isZero()) return Linear(-b, -b); SBasis result(a); result[0] -= b; return result; } inline SBasis& operator+=(SBasis& a, double b) { if(a.isZero()) a = SBasis(Linear(b,b)); else a[0] += b; return a; } inline SBasis& operator-=(SBasis& a, double b) { if(a.isZero()) a = SBasis(Linear(-b,-b)); else a[0] -= b; return a; } SBasis shift(SBasis const &a, int sh); SBasis shift(Linear const &a, int sh); inline SBasis truncate(SBasis const &a, unsigned terms) { SBasis c; c.insert(c.begin(), a.begin(), a.begin() + std::min(terms, (unsigned)a.size())); return c; } SBasis multiply(SBasis const &a, SBasis const &b); // This performs a multiply and accumulate operation in about the same time as multiply. return a*b + c SBasis multiply_add(SBasis const &a, SBasis const &b, SBasis c); SBasis integral(SBasis const &c); SBasis derivative(SBasis const &a); SBasis sqrt(SBasis const &a, int k); // return a kth order approx to 1/a) SBasis reciprocal(Linear const &a, int k); SBasis divide(SBasis const &a, SBasis const &b, int k); inline SBasis operator*(SBasis const & a, SBasis const & b) { return multiply(a, b); } inline SBasis& operator*=(SBasis& a, SBasis const & b) { a = multiply(a, b); return a; } /** Returns the degree of the first non zero coefficient. \param a sbasis function \param tol largest abs val considered 0 \return first non zero coefficient \relates SBasis */ inline unsigned valuation(SBasis const &a, double tol=0){ unsigned val=0; while( val roots(SBasis const & s); std::vector roots(SBasis const & s, Interval const inside); std::vector > multi_roots(SBasis const &f, std::vector const &levels, double htol=1e-7, double vtol=1e-7, double a=0, double b=1); //--------- Levelset like functions ----------------------------------------------------- /** Solve f(t) = v +/- tolerance. The collection of intervals where * v - vtol <= f(t) <= v+vtol * is returned (with a precision tol on the boundaries). \param f sbasis function \param level the value of v. \param vtol: error tolerance on v. \param a, b limit search on domain [a,b] \param tol: tolerance on the result bounds. \returns a vector of intervals. */ std::vector level_set (SBasis const &f, double level, double vtol = 1e-5, double a=0., double b=1., double tol = 1e-5); /** Solve f(t)\in I=[u,v], which defines a collection of intervals (J_k). More precisely, * a collection (J'_k) is returned with J'_k = J_k up to a given tolerance. \param f sbasis function \param level: the given interval of deisred values for f. \param a, b limit search on domain [a,b] \param tol: tolerance on the bounds of the result. \returns a vector of intervals. */ std::vector level_set (SBasis const &f, Interval const &level, double a=0., double b=1., double tol = 1e-5); /** 'Solve' f(t) = v +/- tolerance for several values of v at once. \param f sbasis function \param levels vector of values, that should be sorted. \param vtol: error tolerance on v. \param a, b limit search on domain [a,b] \param tol: the bounds of the returned intervals are exact up to that tolerance. \returns a vector of vectors of intervals. */ std::vector > level_sets (SBasis const &f, std::vector const &levels, double a=0., double b=1., double vtol = 1e-5, double tol = 1e-5); /** 'Solve' f(t)\in I=[u,v] for several intervals I at once. \param f sbasis function \param levels vector of 'y' intervals, that should be disjoints and sorted. \param a, b limit search on domain [a,b] \param tol: the bounds of the returned intervals are exact up to that tolerance. \returns a vector of vectors of intervals. */ std::vector > level_sets (SBasis const &f, std::vector const &levels, double a=0., double b=1., double tol = 1e-5); } #endif /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : #endif