/* * Implement the Bezier clipping algorithm for finding * Bezier curve intersection points and collinear normals * * Authors: * Marco Cecchetti * * Copyright 2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/basic-intersection.h> #include <2geom/choose.h> #include <2geom/point.h> #include <2geom/interval.h> #include <2geom/bezier.h> #include <2geom/numeric/matrix.h> #include <2geom/convex-hull.h> #include <2geom/line.h> #include #include #include #include //#include using std::swap; #define VERBOSE 0 #define CHECK 0 namespace Geom { namespace detail { namespace bezier_clipping { //////////////////////////////////////////////////////////////////////////////// // for debugging // void print(std::vector const& cp, const char* msg = "") { std::cerr << msg << std::endl; for (size_t i = 0; i < cp.size(); ++i) std::cerr << i << " : " << cp[i] << std::endl; } template< class charT > std::basic_ostream & operator<< (std::basic_ostream & os, const Interval & I) { os << "[" << I.min() << ", " << I.max() << "]"; return os; } double angle (std::vector const& A) { size_t n = A.size() -1; double a = std::atan2(A[n][Y] - A[0][Y], A[n][X] - A[0][X]); return (180 * a / M_PI); } size_t get_precision(Interval const& I) { double d = I.extent(); double e = 0.1, p = 10; int n = 0; while (n < 16 && d < e) { p *= 10; e = 1/p; ++n; } return n; } void range_assertion(int k, int m, int n, const char* msg) { if ( k < m || k > n) { std::cerr << "range assertion failed: \n" << msg << std::endl << "value: " << k << " range: " << m << ", " << n << std::endl; assert (k >= m && k <= n); } } //////////////////////////////////////////////////////////////////////////////// // numerical routines /* * Compute the determinant of the 2x2 matrix with column the point P1, P2 */ double det(Point const& P1, Point const& P2) { return P1[X]*P2[Y] - P1[Y]*P2[X]; } /* * Solve the linear system [P1,P2] * P = Q * in case there isn't exactly one solution the routine returns false */ bool solve(Point & P, Point const& P1, Point const& P2, Point const& Q) { double d = det(P1, P2); if (d == 0) return false; d = 1 / d; P[X] = det(Q, P2) * d; P[Y] = det(P1, Q) * d; return true; } //////////////////////////////////////////////////////////////////////////////// // interval routines /* * Map the sub-interval I in [0,1] into the interval J and assign it to J */ void map_to(Interval & J, Interval const& I) { J.setEnds(J.valueAt(I.min()), J.valueAt(I.max())); } //////////////////////////////////////////////////////////////////////////////// // bezier curve routines /* * Return true if all the Bezier curve control points are near, * false otherwise */ // Bezier.isConstant(precision) bool is_constant(std::vector const& A, double precision) { for (unsigned int i = 1; i < A.size(); ++i) { if(!are_near(A[i], A[0], precision)) return false; } return true; } /* * Compute the hodograph of the bezier curve B and return it in D */ // derivative(Bezier) void derivative(std::vector & D, std::vector const& B) { D.clear(); size_t sz = B.size(); if (sz == 0) return; if (sz == 1) { D.resize(1, Point(0,0)); return; } size_t n = sz-1; D.reserve(n); for (size_t i = 0; i < n; ++i) { D.push_back(n*(B[i+1] - B[i])); } } /* * Compute the hodograph of the Bezier curve B rotated of 90 degree * and return it in D; we have N(t) orthogonal to B(t) for any t */ // rot90(derivative(Bezier)) void normal(std::vector & N, std::vector const& B) { derivative(N,B); for (auto & i : N) { i = rot90(i); } } /* * Compute the portion of the Bezier curve "B" wrt the interval [0,t] */ // portion(Bezier, 0, t) void left_portion(Coord t, std::vector & B) { size_t n = B.size(); for (size_t i = 1; i < n; ++i) { for (size_t j = n-1; j > i-1 ; --j) { B[j] = lerp(t, B[j-1], B[j]); } } } /* * Compute the portion of the Bezier curve "B" wrt the interval [t,1] */ // portion(Bezier, t, 1) void right_portion(Coord t, std::vector & B) { size_t n = B.size(); for (size_t i = 1; i < n; ++i) { for (size_t j = 0; j < n-i; ++j) { B[j] = lerp(t, B[j], B[j+1]); } } } /* * Compute the portion of the Bezier curve "B" wrt the interval "I" */ // portion(Bezier, I) void portion (std::vector & B , Interval const& I) { if (I.min() == 0) { if (I.max() == 1) return; left_portion(I.max(), B); return; } right_portion(I.min(), B); if (I.max() == 1) return; double t = I.extent() / (1 - I.min()); left_portion(t, B); } //////////////////////////////////////////////////////////////////////////////// // tags struct intersection_point_tag; struct collinear_normal_tag; template OptInterval clip(std::vector const& A, std::vector const& B, double precision); template void iterate(std::vector& domsA, std::vector& domsB, std::vector const& A, std::vector const& B, Interval const& domA, Interval const& domB, double precision ); //////////////////////////////////////////////////////////////////////////////// // intersection /* * Make up an orientation line using the control points c[i] and c[j] * the line is returned in the output parameter "l" in the form of a 3 element * vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized. */ // Line(c[i], c[j]) void orientation_line (std::vector & l, std::vector const& c, size_t i, size_t j) { l[0] = c[j][Y] - c[i][Y]; l[1] = c[i][X] - c[j][X]; l[2] = cross(c[j], c[i]); double length = std::sqrt(l[0] * l[0] + l[1] * l[1]); assert (length != 0); l[0] /= length; l[1] /= length; l[2] /= length; } /* * Pick up an orientation line for the Bezier curve "c" and return it in * the output parameter "l" */ Line pick_orientation_line (std::vector const &c, double precision) { size_t i = c.size(); while (--i > 0 && are_near(c[0], c[i], precision)) {} // this should never happen because when a new curve portion is created // we check that it is not constant; // however this requires that the precision used in the is_constant // routine has to be the same used here in the are_near test assert(i != 0); Line line(c[0], c[i]); return line; //std::cerr << "i = " << i << std::endl; } /* * Make up an orientation line for constant bezier curve; * the orientation line is made up orthogonal to the other curve base line; * the line is returned in the output parameter "l" in the form of a 3 element * vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized. */ Line orthogonal_orientation_line (std::vector const &c, Point const &p, double precision) { // this should never happen assert(!is_constant(c, precision)); Line line(p, (c.back() - c.front()).cw() + p); return line; } /* * Compute the signed distance of the point "P" from the normalized line l */ double signed_distance(Point const &p, Line const &l) { Coord a, b, c; l.coefficients(a, b, c); return a * p[X] + b * p[Y] + c; } /* * Compute the min and max distance of the control points of the Bezier * curve "c" from the normalized orientation line "l". * This bounds are returned through the output Interval parameter"bound". */ Interval fat_line_bounds (std::vector const &c, Line const &l) { Interval bound(0, 0); for (auto i : c) { bound.expandTo(signed_distance(i, l)); } return bound; } /* * return the x component of the intersection point between the line * passing through points p1, p2 and the line Y = "y" */ double intersect (Point const& p1, Point const& p2, double y) { // we are sure that p2[Y] != p1[Y] because this routine is called // only when the lower or the upper bound is crossed double dy = (p2[Y] - p1[Y]); double s = (y - p1[Y]) / dy; return (p2[X]-p1[X])*s + p1[X]; } /* * Clip the Bezier curve "B" wrt the fat line defined by the orientation * line "l" and the interval range "bound", the new parameter interval for * the clipped curve is returned through the output parameter "dom" */ OptInterval clip_interval (std::vector const& B, Line const &l, Interval const &bound) { double n = B.size() - 1; // number of sub-intervals std::vector D; // distance curve control points D.reserve (B.size()); for (size_t i = 0; i < B.size(); ++i) { const double d = signed_distance(B[i], l); D.emplace_back(i/n, d); } //print(D); ConvexHull p; p.swap(D); //print(p); bool plower, phigher; bool clower, chigher; double t, tmin = 1, tmax = 0; // std::cerr << "bound : " << bound << std::endl; plower = (p[0][Y] < bound.min()); phigher = (p[0][Y] > bound.max()); if (!(plower || phigher)) // inside the fat line { if (tmin > p[0][X]) tmin = p[0][X]; if (tmax < p[0][X]) tmax = p[0][X]; // std::cerr << "0 : inside " << p[0] // << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; } for (size_t i = 1; i < p.size(); ++i) { clower = (p[i][Y] < bound.min()); chigher = (p[i][Y] > bound.max()); if (!(clower || chigher)) // inside the fat line { if (tmin > p[i][X]) tmin = p[i][X]; if (tmax < p[i][X]) tmax = p[i][X]; // std::cerr << i << " : inside " << p[i] // << " : tmin = " << tmin << ", tmax = " << tmax // << std::endl; } if (clower != plower) // cross the lower bound { t = intersect(p[i-1], p[i], bound.min()); if (tmin > t) tmin = t; if (tmax < t) tmax = t; plower = clower; // std::cerr << i << " : lower " << p[i] // << " : tmin = " << tmin << ", tmax = " << tmax // << std::endl; } if (chigher != phigher) // cross the upper bound { t = intersect(p[i-1], p[i], bound.max()); if (tmin > t) tmin = t; if (tmax < t) tmax = t; phigher = chigher; // std::cerr << i << " : higher " << p[i] // << " : tmin = " << tmin << ", tmax = " << tmax // << std::endl; } } // we have to test the closing segment for intersection size_t last = p.size() - 1; clower = (p[0][Y] < bound.min()); chigher = (p[0][Y] > bound.max()); if (clower != plower) // cross the lower bound { t = intersect(p[last], p[0], bound.min()); if (tmin > t) tmin = t; if (tmax < t) tmax = t; // std::cerr << "0 : lower " << p[0] // << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; } if (chigher != phigher) // cross the upper bound { t = intersect(p[last], p[0], bound.max()); if (tmin > t) tmin = t; if (tmax < t) tmax = t; // std::cerr << "0 : higher " << p[0] // << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; } if (tmin == 1 && tmax == 0) { return OptInterval(); } else { return Interval(tmin, tmax); } } /* * Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating * intersection points the new parameter interval for the clipped curve * is returned through the output parameter "dom" */ template <> OptInterval clip (std::vector const& A, std::vector const& B, double precision) { Line bl; if (is_constant(A, precision)) { Point M = middle_point(A.front(), A.back()); bl = orthogonal_orientation_line(B, M, precision); } else { bl = pick_orientation_line(A, precision); } bl.normalize(); Interval bound = fat_line_bounds(A, bl); return clip_interval(B, bl, bound); } /////////////////////////////////////////////////////////////////////////////// // collinear normal /* * Compute a closed focus for the Bezier curve B and return it in F * A focus is any curve through which all lines perpendicular to B(t) pass. */ void make_focus (std::vector & F, std::vector const& B) { assert (B.size() > 2); size_t n = B.size() - 1; normal(F, B); Point c(1, 1); #if VERBOSE if (!solve(c, F[0], -F[n-1], B[n]-B[0])) { std::cerr << "make_focus: unable to make up a closed focus" << std::endl; } #else solve(c, F[0], -F[n-1], B[n]-B[0]); #endif // std::cerr << "c = " << c << std::endl; // B(t) + c(t) * N(t) double n_inv = 1 / (double)(n); Point c0ni; F.push_back(c[1] * F[n-1]); F[n] += B[n]; for (size_t i = n-1; i > 0; --i) { F[i] *= -c[0]; c0ni = F[i]; F[i] += (c[1] * F[i-1]); F[i] *= (i * n_inv); F[i] -= c0ni; F[i] += B[i]; } F[0] *= c[0]; F[0] += B[0]; } /* * Compute the projection on the plane (t, d) of the control points * (t, u, D(t,u)) where D(t,u) = <(B(t) - F(u)), B'(t)> with 0 <= t, u <= 1 * B is a Bezier curve and F is a focus of another Bezier curve. * See Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping. */ void distance_control_points (std::vector & D, std::vector const& B, std::vector const& F) { assert (B.size() > 1); assert (!F.empty()); const size_t n = B.size() - 1; const size_t m = F.size() - 1; const size_t r = 2 * n - 1; const double r_inv = 1 / (double)(r); D.clear(); D.reserve (B.size() * F.size()); std::vector dB; dB.reserve(n); for (size_t k = 0; k < n; ++k) { dB.push_back (B[k+1] - B[k]); } NL::Matrix dBB(n,B.size()); for (size_t i = 0; i < n; ++i) for (size_t j = 0; j < B.size(); ++j) dBB(i,j) = dot (dB[i], B[j]); NL::Matrix dBF(n, F.size()); for (size_t i = 0; i < n; ++i) for (size_t j = 0; j < F.size(); ++j) dBF(i,j) = dot (dB[i], F[j]); size_t l; double bc; Point dij; std::vector d(F.size()); int rci = 1; int b1 = 1; for (size_t i = 0; i <= r; ++i) { for (size_t j = 0; j <= m; ++j) { d[j] = 0; } const size_t k0 = std::max(i, n) - n; const size_t kn = std::min(i, n-1); const double bri = (double)n / rci; // assert(rci == binomial(r, i)); binomial_increment_k(rci, r, i); int b2 = b1; for (size_t k = k0; k <= kn; ++k) { //if (k > i || (i-k) > n) continue; l = i - k; #if CHECK assert (l <= n); #endif bc = bri * b2; // assert(b2 == binomial(n, l) * binomial(n - 1, k)); binomial_decrement_k(b2, n, l); binomial_increment_k(b2, n - 1, k); for (size_t j = 0; j <= m; ++j) { //d[j] += bc * dot(dB[k], B[l] - F[j]); d[j] += bc * (dBB(k,l) - dBF(k,j)); } } // assert(b1 == binomial(n, i - k0) * binomial(n - 1, k0)); if (i < n) { binomial_increment_k(b1, n, i); } else { binomial_increment_k(b1, n - 1, k0); } double dmin, dmax; dmin = dmax = d[m]; for (size_t j = 0; j < m; ++j) { if (dmin > d[j]) dmin = d[j]; if (dmax < d[j]) dmax = d[j]; } dij[0] = i * r_inv; dij[1] = dmin; D.push_back (dij); dij[1] = dmax; D.push_back (dij); } } /* * Clip the Bezier curve "B" wrt the focus "F"; the new parameter interval for * the clipped curve is returned through the output parameter "dom" */ OptInterval clip_interval (std::vector const& B, std::vector const& F) { std::vector D; // distance curve control points distance_control_points(D, B, F); //print(D, "D"); // ConvexHull chD(D); // std::vector& p = chD.boundary; // convex hull vertices ConvexHull p; p.swap(D); //print(p, "CH(D)"); bool plower, clower; double t, tmin = 1, tmax = 0; plower = (p[0][Y] < 0); if (p[0][Y] == 0) // on the x axis { if (tmin > p[0][X]) tmin = p[0][X]; if (tmax < p[0][X]) tmax = p[0][X]; // std::cerr << "0 : on x axis " << p[0] // << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; } for (size_t i = 1; i < p.size(); ++i) { clower = (p[i][Y] < 0); if (p[i][Y] == 0) // on x axis { if (tmin > p[i][X]) tmin = p[i][X]; if (tmax < p[i][X]) tmax = p[i][X]; // std::cerr << i << " : on x axis " << p[i] // << " : tmin = " << tmin << ", tmax = " << tmax // << std::endl; } else if (clower != plower) // cross the x axis { t = intersect(p[i-1], p[i], 0); if (tmin > t) tmin = t; if (tmax < t) tmax = t; plower = clower; // std::cerr << i << " : lower " << p[i] // << " : tmin = " << tmin << ", tmax = " << tmax // << std::endl; } } // we have to test the closing segment for intersection size_t last = p.size() - 1; clower = (p[0][Y] < 0); if (clower != plower) // cross the x axis { t = intersect(p[last], p[0], 0); if (tmin > t) tmin = t; if (tmax < t) tmax = t; // std::cerr << "0 : lower " << p[0] // << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; } if (tmin == 1 && tmax == 0) { return OptInterval(); } else { return Interval(tmin, tmax); } } /* * Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating * points which have collinear normals; the new parameter interval * for the clipped curve is returned through the output parameter "dom" */ template <> OptInterval clip (std::vector const& A, std::vector const& B, double /*precision*/) { std::vector F; make_focus(F, A); return clip_interval(B, F); } const double MAX_PRECISION = 1e-8; const double MIN_CLIPPED_SIZE_THRESHOLD = 0.8; const Interval UNIT_INTERVAL(0,1); const OptInterval EMPTY_INTERVAL; const Interval H1_INTERVAL(0, 0.5); const Interval H2_INTERVAL(nextafter(0.5, 1.0), 1.0); /* * iterate * * input: * A, B: control point sets of two bezier curves * domA, domB: real parameter intervals of the two curves * precision: required computational precision of the returned parameter ranges * output: * domsA, domsB: sets of parameter intervals * * The parameter intervals are computed by using a Bezier clipping algorithm, * in case the clipping doesn't shrink the initial interval more than 20%, * a subdivision step is performed. * If during the computation both curves collapse to a single point * the routine exits independently by the precision reached in the computation * of the curve intervals. */ template <> void iterate (std::vector& domsA, std::vector& domsB, std::vector const& A, std::vector const& B, Interval const& domA, Interval const& domB, double precision ) { // in order to limit recursion static size_t counter = 0; if (domA.extent() == 1 && domB.extent() == 1) counter = 0; if (++counter > 100) return; #if VERBOSE std::cerr << std::fixed << std::setprecision(16); std::cerr << ">> curve subdision performed <<" << std::endl; std::cerr << "dom(A) : " << domA << std::endl; std::cerr << "dom(B) : " << domB << std::endl; // std::cerr << "angle(A) : " << angle(A) << std::endl; // std::cerr << "angle(B) : " << angle(B) << std::endl; #endif if (precision < MAX_PRECISION) precision = MAX_PRECISION; std::vector pA = A; std::vector pB = B; std::vector* C1 = &pA; std::vector* C2 = &pB; Interval dompA = domA; Interval dompB = domB; Interval* dom1 = &dompA; Interval* dom2 = &dompB; OptInterval dom; if ( is_constant(A, precision) && is_constant(B, precision) ){ Point M1 = middle_point(C1->front(), C1->back()); Point M2 = middle_point(C2->front(), C2->back()); if (are_near(M1,M2)){ domsA.push_back(domA); domsB.push_back(domB); } return; } size_t iter = 0; while (++iter < 100 && (dompA.extent() >= precision || dompB.extent() >= precision)) { #if VERBOSE std::cerr << "iter: " << iter << std::endl; #endif dom = clip(*C1, *C2, precision); if (dom.empty()) { #if VERBOSE std::cerr << "dom: empty" << std::endl; #endif return; } #if VERBOSE std::cerr << "dom : " << dom << std::endl; #endif // all other cases where dom[0] > dom[1] are invalid assert(dom->min() <= dom->max()); map_to(*dom2, *dom); portion(*C2, *dom); if (is_constant(*C2, precision) && is_constant(*C1, precision)) { Point M1 = middle_point(C1->front(), C1->back()); Point M2 = middle_point(C2->front(), C2->back()); #if VERBOSE std::cerr << "both curves are constant: \n" << "M1: " << M1 << "\n" << "M2: " << M2 << std::endl; print(*C2, "C2"); print(*C1, "C1"); #endif if (are_near(M1,M2)) break; // append the new interval else return; // exit without appending any new interval } // if we have clipped less than 20% than we need to subdive the curve // with the largest domain into two sub-curves if (dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD) { #if VERBOSE std::cerr << "clipped less than 20% : " << dom->extent() << std::endl; std::cerr << "angle(pA) : " << angle(pA) << std::endl; std::cerr << "angle(pB) : " << angle(pB) << std::endl; #endif std::vector pC1, pC2; Interval dompC1, dompC2; if (dompA.extent() > dompB.extent()) { pC1 = pC2 = pA; portion(pC1, H1_INTERVAL); portion(pC2, H2_INTERVAL); dompC1 = dompC2 = dompA; map_to(dompC1, H1_INTERVAL); map_to(dompC2, H2_INTERVAL); iterate(domsA, domsB, pC1, pB, dompC1, dompB, precision); iterate(domsA, domsB, pC2, pB, dompC2, dompB, precision); } else { pC1 = pC2 = pB; portion(pC1, H1_INTERVAL); portion(pC2, H2_INTERVAL); dompC1 = dompC2 = dompB; map_to(dompC1, H1_INTERVAL); map_to(dompC2, H2_INTERVAL); iterate(domsB, domsA, pC1, pA, dompC1, dompA, precision); iterate(domsB, domsA, pC2, pA, dompC2, dompA, precision); } return; } swap(C1, C2); swap(dom1, dom2); #if VERBOSE std::cerr << "dom(pA) : " << dompA << std::endl; std::cerr << "dom(pB) : " << dompB << std::endl; #endif } domsA.push_back(dompA); domsB.push_back(dompB); } /* * iterate * * input: * A, B: control point sets of two bezier curves * domA, domB: real parameter intervals of the two curves * precision: required computational precision of the returned parameter ranges * output: * domsA, domsB: sets of parameter intervals * * The parameter intervals are computed by using a Bezier clipping algorithm, * in case the clipping doesn't shrink the initial interval more than 20%, * a subdivision step is performed. * If during the computation one of the two curve interval length becomes less * than MAX_PRECISION the routine exits independently by the precision reached * in the computation of the other curve interval. */ template <> void iterate (std::vector& domsA, std::vector& domsB, std::vector const& A, std::vector const& B, Interval const& domA, Interval const& domB, double precision) { // in order to limit recursion static size_t counter = 0; if (domA.extent() == 1 && domB.extent() == 1) counter = 0; if (++counter > 100) return; #if VERBOSE std::cerr << std::fixed << std::setprecision(16); std::cerr << ">> curve subdision performed <<" << std::endl; std::cerr << "dom(A) : " << domA << std::endl; std::cerr << "dom(B) : " << domB << std::endl; // std::cerr << "angle(A) : " << angle(A) << std::endl; // std::cerr << "angle(B) : " << angle(B) << std::endl; #endif if (precision < MAX_PRECISION) precision = MAX_PRECISION; std::vector pA = A; std::vector pB = B; std::vector* C1 = &pA; std::vector* C2 = &pB; Interval dompA = domA; Interval dompB = domB; Interval* dom1 = &dompA; Interval* dom2 = &dompB; OptInterval dom; size_t iter = 0; while (++iter < 100 && (dompA.extent() >= precision || dompB.extent() >= precision)) { #if VERBOSE std::cerr << "iter: " << iter << std::endl; #endif dom = clip(*C1, *C2, precision); if (dom.empty()) { #if VERBOSE std::cerr << "dom: empty" << std::endl; #endif return; } #if VERBOSE std::cerr << "dom : " << dom << std::endl; #endif assert(dom->min() <= dom->max()); map_to(*dom2, *dom); // it's better to stop before losing computational precision if (iter > 1 && (dom2->extent() <= MAX_PRECISION)) { #if VERBOSE std::cerr << "beyond max precision limit" << std::endl; #endif break; } portion(*C2, *dom); if (iter > 1 && is_constant(*C2, precision)) { #if VERBOSE std::cerr << "new curve portion pC1 is constant" << std::endl; #endif break; } // if we have clipped less than 20% than we need to subdive the curve // with the largest domain into two sub-curves if ( dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD) { #if VERBOSE std::cerr << "clipped less than 20% : " << dom->extent() << std::endl; std::cerr << "angle(pA) : " << angle(pA) << std::endl; std::cerr << "angle(pB) : " << angle(pB) << std::endl; #endif std::vector pC1, pC2; Interval dompC1, dompC2; if (dompA.extent() > dompB.extent()) { if ((dompA.extent() / 2) < MAX_PRECISION) { break; } pC1 = pC2 = pA; portion(pC1, H1_INTERVAL); if (false && is_constant(pC1, precision)) { #if VERBOSE std::cerr << "new curve portion pC1 is constant" << std::endl; #endif break; } portion(pC2, H2_INTERVAL); if (is_constant(pC2, precision)) { #if VERBOSE std::cerr << "new curve portion pC2 is constant" << std::endl; #endif break; } dompC1 = dompC2 = dompA; map_to(dompC1, H1_INTERVAL); map_to(dompC2, H2_INTERVAL); iterate(domsA, domsB, pC1, pB, dompC1, dompB, precision); iterate(domsA, domsB, pC2, pB, dompC2, dompB, precision); } else { if ((dompB.extent() / 2) < MAX_PRECISION) { break; } pC1 = pC2 = pB; portion(pC1, H1_INTERVAL); if (is_constant(pC1, precision)) { #if VERBOSE std::cerr << "new curve portion pC1 is constant" << std::endl; #endif break; } portion(pC2, H2_INTERVAL); if (is_constant(pC2, precision)) { #if VERBOSE std::cerr << "new curve portion pC2 is constant" << std::endl; #endif break; } dompC1 = dompC2 = dompB; map_to(dompC1, H1_INTERVAL); map_to(dompC2, H2_INTERVAL); iterate(domsB, domsA, pC1, pA, dompC1, dompA, precision); iterate(domsB, domsA, pC2, pA, dompC2, dompA, precision); } return; } swap(C1, C2); swap(dom1, dom2); #if VERBOSE std::cerr << "dom(pA) : " << dompA << std::endl; std::cerr << "dom(pB) : " << dompB << std::endl; #endif } domsA.push_back(dompA); domsB.push_back(dompB); } /* * get_solutions * * input: A, B - set of control points of two Bezier curve * input: precision - required precision of computation * input: clip - the routine used for clipping * output: xs - set of pairs of parameter values * at which the clipping algorithm converges * * This routine is based on the Bezier Clipping Algorithm, * see: Sederberg - Computer Aided Geometric Design */ template void get_solutions (std::vector< std::pair >& xs, std::vector const& A, std::vector const& B, double precision) { std::pair ci; std::vector domsA, domsB; iterate (domsA, domsB, A, B, UNIT_INTERVAL, UNIT_INTERVAL, precision); if (domsA.size() != domsB.size()) { assert (domsA.size() == domsB.size()); } xs.clear(); xs.reserve(domsA.size()); for (size_t i = 0; i < domsA.size(); ++i) { #if VERBOSE std::cerr << i << " : domA : " << domsA[i] << std::endl; std::cerr << "extent A: " << domsA[i].extent() << " "; std::cerr << "precision A: " << get_precision(domsA[i]) << std::endl; std::cerr << i << " : domB : " << domsB[i] << std::endl; std::cerr << "extent B: " << domsB[i].extent() << " "; std::cerr << "precision B: " << get_precision(domsB[i]) << std::endl; #endif ci.first = domsA[i].middle(); ci.second = domsB[i].middle(); xs.push_back(ci); } } } /* end namespace bezier_clipping */ } /* end namespace detail */ /* * find_collinear_normal * * input: A, B - set of control points of two Bezier curve * input: precision - required precision of computation * output: xs - set of pairs of parameter values * at which there are collinear normals * * This routine is based on the Bezier Clipping Algorithm, * see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping */ void find_collinear_normal (std::vector< std::pair >& xs, std::vector const& A, std::vector const& B, double precision) { using detail::bezier_clipping::get_solutions; using detail::bezier_clipping::collinear_normal_tag; get_solutions(xs, A, B, precision); } /* * find_intersections_bezier_clipping * * input: A, B - set of control points of two Bezier curve * input: precision - required precision of computation * output: xs - set of pairs of parameter values * at which crossing happens * * This routine is based on the Bezier Clipping Algorithm, * see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping */ void find_intersections_bezier_clipping (std::vector< std::pair >& xs, std::vector const& A, std::vector const& B, double precision) { using detail::bezier_clipping::get_solutions; using detail::bezier_clipping::intersection_point_tag; get_solutions(xs, A, B, precision); } } // end namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :