/** * @file * @brief Bernstein-Bezier polynomial *//* * Authors: * MenTaLguY * Michael Sloan * Nathan Hurst * Krzysztof Kosiński * * Copyright 2007-2015 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * */ #include <2geom/bezier.h> #include <2geom/solver.h> #include <2geom/concepts.h> #include <2geom/choose.h> namespace Geom { std::vector Bezier::valueAndDerivatives(Coord t, unsigned n_derivs) const { /* This is inelegant, as it uses several extra stores. I think there might be a way to * evaluate roughly in situ. */ // initialize return vector with zeroes, such that we only need to replace the non-zero derivs std::vector val_n_der(n_derivs + 1, Coord(0.0)); // initialize temp storage variables std::valarray d_(order()+1); for(unsigned i = 0; i < size(); i++) { d_[i] = c_[i]; } unsigned nn = n_derivs + 1; if(n_derivs > order()) { nn = order()+1; // only calculate the non zero derivs } for(unsigned di = 0; di < nn; di++) { //val_n_der[di] = (casteljau_subdivision(t, &d_[0], NULL, NULL, order() - di)); val_n_der[di] = bernstein_value_at(t, &d_[0], order() - di); for(unsigned i = 0; i < order() - di; i++) { d_[i] = (order()-di)*(d_[i+1] - d_[i]); } } return val_n_der; } void Bezier::subdivide(Coord t, Bezier *left, Bezier *right) const { if (left) { left->c_.resize(size()); if (right) { right->c_.resize(size()); casteljau_subdivision(t, &const_cast&>(c_)[0], &left->c_[0], &right->c_[0], order()); } else { casteljau_subdivision(t, &const_cast&>(c_)[0], &left->c_[0], NULL, order()); } } else if (right) { right->c_.resize(size()); casteljau_subdivision(t, &const_cast&>(c_)[0], NULL, &right->c_[0], order()); } } std::pair Bezier::subdivide(Coord t) const { std::pair ret; subdivide(t, &ret.first, &ret.second); return ret; } std::vector Bezier::roots() const { std::vector solutions; find_bezier_roots(solutions, 0, 1); std::sort(solutions.begin(), solutions.end()); return solutions; } std::vector Bezier::roots(Interval const &ivl) const { std::vector solutions; find_bernstein_roots(&const_cast&>(c_)[0], order(), solutions, 0, ivl.min(), ivl.max()); std::sort(solutions.begin(), solutions.end()); return solutions; } Bezier Bezier::forward_difference(unsigned k) const { Bezier fd(Order(order() - k)); int n = fd.size(); for (int i = 0; i < n; i++) { fd[i] = 0; int b = (i & 1) ? -1 : 1; // b = (-1)^j binomial(n, j - i) for (int j = i; j < n; j++) { fd[i] += c_[j] * b; binomial_increment_k(b, n, j - i); b = -b; } } return fd; } Bezier Bezier::elevate_degree() const { Bezier ed(Order(order()+1)); unsigned n = size(); ed[0] = c_[0]; ed[n] = c_[n-1]; for(unsigned i = 1; i < n; i++) { ed[i] = (i*c_[i-1] + (n - i)*c_[i])/(n); } return ed; } Bezier Bezier::reduce_degree() const { if(order() == 0) return *this; Bezier ed(Order(order()-1)); unsigned n = size(); ed[0] = c_[0]; ed[n-1] = c_[n]; // ensure exact endpoints unsigned middle = n/2; for(unsigned i = 1; i < middle; i++) { ed[i] = (n*c_[i] - i*ed[i-1])/(n-i); } for(unsigned i = n-1; i >= middle; i--) { ed[i] = (n*c_[i] - i*ed[n-i])/(i); } return ed; } Bezier Bezier::elevate_to_degree(unsigned newDegree) const { Bezier ed = *this; for(unsigned i = degree(); i < newDegree; i++) { ed = ed.elevate_degree(); } return ed; } Bezier Bezier::deflate() const { if(order() == 0) return *this; unsigned n = order(); Bezier b(Order(n-1)); for(unsigned i = 0; i < n; i++) { b[i] = (n*c_[i+1])/(i+1); } return b; } SBasis Bezier::toSBasis() const { SBasis sb; bezier_to_sbasis(sb, (*this)); return sb; //return bezier_to_sbasis(&c_[0], order()); } Bezier &Bezier::operator+=(Bezier const &other) { if (c_.size() > other.size()) { c_ += other.elevate_to_degree(degree()).c_; } else if (c_.size() < other.size()) { *this = elevate_to_degree(other.degree()); c_ += other.c_; } else { c_ += other.c_; } return *this; } Bezier &Bezier::operator-=(Bezier const &other) { if (c_.size() > other.size()) { c_ -= other.elevate_to_degree(degree()).c_; } else if (c_.size() < other.size()) { *this = elevate_to_degree(other.degree()); c_ -= other.c_; } else { c_ -= other.c_; } return *this; } Bezier operator*(Bezier const &f, Bezier const &g) { int m = f.order(); int n = g.order(); Bezier h(Bezier::Order(m+n)); // h_k = sum_(i+j=k) (m i)f_i (n j)g_j / (m+n k) int mci = 1; for (int i = 0; i <= m; i++) { double const fi = mci * f[i]; int ncj = 1; for (int j = 0; j <= n; j++) { h[i + j] += fi * ncj * g[j]; binomial_increment_k(ncj, n, j); } binomial_increment_k(mci, m, i); } int mnck = 1; for (int k = 0; k <= m + n; k++) { h[k] /= mnck; binomial_increment_k(mnck, m + n, k); } return h; } Bezier portion(Bezier const &a, double from, double to) { Bezier ret(a); bool reverse_result = false; if (from > to) { std::swap(from, to); reverse_result = true; } do { if (from == 0) { if (to == 1) { break; } casteljau_subdivision(to, &ret.c_[0], &ret.c_[0], NULL, ret.order()); break; } casteljau_subdivision(from, &ret.c_[0], NULL, &ret.c_[0], ret.order()); if (to == 1) break; casteljau_subdivision((to - from) / (1 - from), &ret.c_[0], &ret.c_[0], NULL, ret.order()); // to protect against numerical inaccuracy in the above expression, we manually set // the last coefficient to a value evaluated directly from the original polynomial ret.c_[ret.order()] = a.valueAt(to); } while(0); if (reverse_result) { std::reverse(&ret.c_[0], &ret.c_[0] + ret.c_.size()); } return ret; } Bezier derivative(Bezier const &a) { //if(a.order() == 1) return Bezier(0.0); if(a.order() == 1) return Bezier(a.c_[1]-a.c_[0]); Bezier der(Bezier::Order(a.order()-1)); for(unsigned i = 0; i < a.order(); i++) { der.c_[i] = a.order()*(a.c_[i+1] - a.c_[i]); } return der; } Bezier integral(Bezier const &a) { Bezier inte(Bezier::Order(a.order()+1)); inte[0] = 0; for(unsigned i = 0; i < inte.order(); i++) { inte[i+1] = inte[i] + a[i]/(inte.order()); } return inte; } OptInterval bounds_fast(Bezier const &b) { OptInterval ret = Interval::from_array(&const_cast(b).c_[0], b.size()); return ret; } OptInterval bounds_exact(Bezier const &b) { OptInterval ret(b.at0(), b.at1()); std::vector r = derivative(b).roots(); for (double i : r) { ret->expandTo(b.valueAt(i)); } return ret; } OptInterval bounds_local(Bezier const &b, OptInterval const &i) { //return bounds_local(b.toSBasis(), i); if (i) { return bounds_fast(portion(b, i->min(), i->max())); } else { return OptInterval(); } } /* * The general bézier of degree n is * * p(t) = sum_{i = 0...n} binomial(n, i) t^i (1 - t)^(n - i) x[i] * * It can be written explicitly as a polynomial in t as * * p(t) = sum_{i = 0...n} binomial(n, i) t^i [ sum_{j = 0...i} binomial(i, j) (-1)^(i - j) x[j] ] * * Its derivative is * * p'(t) = n sum_{i = 1...n} binomial(n - 1, i - 1) t^(i - 1) [ sum_{j = 0...i} binomial(i, j) (-1)^(i - j) x[j] ] * * This is used by the various specialisations below as an optimisation for low degree n <= 3. * In the remaining cases, the generic implementation is used which resorts to iteration. */ void bezier_expand_to_image(Interval &range, Coord x0, Coord x1, Coord x2) { range.expandTo(x2); if (range.contains(x1)) { // The interval contains all control points, and therefore the entire curve. return; } // p'(t) / 2 = at + b auto a = (x2 - x1) - (x1 - x0); auto b = x1 - x0; // t = -b / a if (std::abs(a) > EPSILON) { auto t = -b / a; if (t > 0.0 && t < 1.0) { auto s = 1.0 - t; auto x = s * s * x0 + 2 * s * t * x1 + t * t * x2; range.expandTo(x); } } } void bezier_expand_to_image(Interval &range, Coord x0, Coord x1, Coord x2, Coord x3) { range.expandTo(x3); if (range.contains(x1) && range.contains(x2)) { // The interval contains all control points, and therefore the entire curve. return; } // p'(t) / 3 = at^2 + 2bt + c auto a = (x3 - x0) - 3 * (x2 - x1); auto b = (x2 - x1) - (x1 - x0); auto c = x1 - x0; auto expand = [&] (Coord t) { if (t > 0.0 && t < 1.0) { auto s = 1.0 - t; auto x = s * s * s * x0 + 3 * s * s * t * x1 + 3 * t * t * s * x2 + t * t * t * x3; range.expandTo(x); } }; // t = (-b ± sqrt(b^2 - ac)) / a if (std::abs(a) < EPSILON) { if (std::abs(b) > EPSILON) { expand(-c / (2 * b)); } } else { auto d2 = b * b - a * c; if (d2 >= 0.0) { auto bsign = b >= 0.0 ? 1 : -1; auto tmp = -(b + bsign * std::sqrt(d2)); expand(tmp / a); expand(c / tmp); // Using Vieta's formula: product of roots == c/a } } } } // namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :