/** @file * @brief Convex hull of a set of points *//* * Authors: * Nathan Hurst * Michael G. Sloan * Krzysztof KosiƄski * Copyright 2006-2015 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * */ #include <2geom/convex-hull.h> #include <2geom/exception.h> #include #include #include #include #include /** Todo: + modify graham scan to work top to bottom, rather than around angles + intersection + minimum distance between convex hulls + maximum distance between convex hulls + hausdorf metric? + check all degenerate cases carefully + check all algorithms meet all invariants + generalise rotating caliper algorithm (iterator/circulator?) */ using std::vector; using std::map; using std::pair; using std::make_pair; using std::swap; namespace Geom { ConvexHull::ConvexHull(Point const &a, Point const &b) : _boundary(2) , _lower(0) { _boundary[0] = a; _boundary[1] = b; std::sort(_boundary.begin(), _boundary.end(), Point::LexLess()); _construct(); } ConvexHull::ConvexHull(Point const &a, Point const &b, Point const &c) : _boundary(3) , _lower(0) { _boundary[0] = a; _boundary[1] = b; _boundary[2] = c; std::sort(_boundary.begin(), _boundary.end(), Point::LexLess()); _construct(); } ConvexHull::ConvexHull(Point const &a, Point const &b, Point const &c, Point const &d) : _boundary(4) , _lower(0) { _boundary[0] = a; _boundary[1] = b; _boundary[2] = c; _boundary[3] = d; std::sort(_boundary.begin(), _boundary.end(), Point::LexLess()); _construct(); } ConvexHull::ConvexHull(std::vector const &pts) : _lower(0) { //if (pts.size() > 16) { // arbitrary threshold // _prune(pts.begin(), pts.end(), _boundary); //} else { _boundary = pts; std::sort(_boundary.begin(), _boundary.end(), Point::LexLess()); //} _construct(); } bool ConvexHull::_is_clockwise_turn(Point const &a, Point const &b, Point const &c) { if (b == c) return false; return cross(b-a, c-a) > 0; } void ConvexHull::_construct() { // _boundary must already be sorted in LexLess order if (_boundary.empty()) { _lower = 0; return; } if (_boundary.size() == 1 || (_boundary.size() == 2 && _boundary[0] == _boundary[1])) { _boundary.resize(1); _lower = 1; return; } if (_boundary.size() == 2) { _lower = 2; return; } std::size_t k = 2; for (std::size_t i = 2; i < _boundary.size(); ++i) { while (k >= 2 && !_is_clockwise_turn(_boundary[k-2], _boundary[k-1], _boundary[i])) { --k; } std::swap(_boundary[k++], _boundary[i]); } _lower = k; std::sort(_boundary.begin() + k, _boundary.end(), Point::LexGreater()); _boundary.push_back(_boundary.front()); for (std::size_t i = _lower; i < _boundary.size(); ++i) { while (k > _lower && !_is_clockwise_turn(_boundary[k-2], _boundary[k-1], _boundary[i])) { --k; } std::swap(_boundary[k++], _boundary[i]); } _boundary.resize(k-1); } double ConvexHull::area() const { if (size() <= 2) return 0; double a = 0; for (std::size_t i = 0; i < size()-1; ++i) { a += cross(_boundary[i], _boundary[i+1]); } a += cross(_boundary.back(), _boundary.front()); return fabs(a * 0.5); } OptRect ConvexHull::bounds() const { OptRect ret; if (empty()) return ret; ret = Rect(left(), top(), right(), bottom()); return ret; } Point ConvexHull::topPoint() const { Point ret; ret[Y] = std::numeric_limits::infinity(); for (auto i : upperHull()) { if (ret[Y] >= i.y()) { ret = i; } else { break; } } return ret; } Point ConvexHull::bottomPoint() const { Point ret; ret[Y] = -std::numeric_limits::infinity(); for (auto j : lowerHull()) { if (ret[Y] <= j.y()) { ret = j; } else { break; } } return ret; } template bool below_x_monotonic_polyline(Point const &p, Iter first, Iter last, Lex lex) { typename Lex::Secondary above; Iter f = std::lower_bound(first, last, p, lex); if (f == last) return false; if (f == first) { if (p == *f) return true; return false; } Point a = *(f-1), b = *f; if (a[X] == b[X]) { if (above(p[Y], a[Y]) || above(b[Y], p[Y])) return false; } else { // TODO: maybe there is a more numerically stable method Coord y = lerp((p[X] - a[X]) / (b[X] - a[X]), a[Y], b[Y]); if (above(p[Y], y)) return false; } return true; } bool ConvexHull::contains(Point const &p) const { if (_boundary.empty()) return false; if (_boundary.size() == 1) { if (_boundary[0] == p) return true; return false; } // 1. verify that the point is in the relevant X range if (p[X] < _boundary[0][X] || p[X] > _boundary[_lower-1][X]) return false; // 2. check whether it is below the upper hull UpperIterator ub = upperHull().begin(), ue = upperHull().end(); if (!below_x_monotonic_polyline(p, ub, ue, Point::LexLess())) return false; // 3. check whether it is above the lower hull LowerIterator lb = lowerHull().begin(), le = lowerHull().end(); if (!below_x_monotonic_polyline(p, lb, le, Point::LexGreater())) return false; return true; } bool ConvexHull::contains(Rect const &r) const { for (unsigned i = 0; i < 4; ++i) { if (!contains(r.corner(i))) return false; } return true; } bool ConvexHull::contains(ConvexHull const &ch) const { // TODO: requires interiorContains. // We have to check all points of ch, and each point takes logarithmic time. // If there are more points in ch that here, it is faster to make the check // the other way around. /*if (ch.size() > size()) { for (iterator i = begin(); i != end(); ++i) { if (ch.interiorContains(*i)) return false; } return true; }*/ for (auto i : ch) { if (!contains(i)) return false; } return true; } void ConvexHull::swap(ConvexHull &other) { _boundary.swap(other._boundary); std::swap(_lower, other._lower); } void ConvexHull::swap(std::vector &pts) { _boundary.swap(pts); _lower = 0; std::sort(_boundary.begin(), _boundary.end(), Point::LexLess()); _construct(); } #if 0 /*** SignedTriangleArea * returns the area of the triangle defined by p0, p1, p2. A clockwise triangle has positive area. */ double SignedTriangleArea(Point p0, Point p1, Point p2) { return cross((p1 - p0), (p2 - p0)); } class angle_cmp{ public: Point o; angle_cmp(Point o) : o(o) {} #if 0 bool operator()(Point a, Point b) { // not remove this check or std::sort could crash if (a == b) return false; Point da = a - o; Point db = b - o; if (da == -db) return false; #if 1 double aa = da[0]; double ab = db[0]; if((da[1] == 0) && (db[1] == 0)) return da[0] < db[0]; if(da[1] == 0) return true; // infinite tangent if(db[1] == 0) return false; // infinite tangent aa = da[0] / da[1]; ab = db[0] / db[1]; if(aa > ab) return true; #else //assert((ata > atb) == (aa < ab)); double aa = atan2(da); double ab = atan2(db); if(aa < ab) return true; #endif if(aa == ab) return L2sq(da) < L2sq(db); return false; } #else bool operator() (Point const& a, Point const& b) { // not remove this check or std::sort could generate // a segmentation fault because it needs a strict '<' // but due to round errors a == b doesn't mean dxy == dyx if (a == b) return false; Point da = a - o; Point db = b - o; if (da == -db) return false; double dxy = da[X] * db[Y]; double dyx = da[Y] * db[X]; if (dxy > dyx) return true; else if (dxy < dyx) return false; return L2sq(da) < L2sq(db); } #endif }; //Mathematically incorrect mod, but more useful. int mod(int i, int l) { return i >= 0 ? i % l : (i % l) + l; } //OPT: usages can often be replaced by conditions /*** ConvexHull::add_point * to add a point we need to find whether the new point extends the boundary, and if so, what it * obscures. Tarjan? Jarvis?*/ void ConvexHull::merge(Point p) { std::vector out; int len = boundary.size(); if(len < 2) { if(boundary.empty() || boundary[0] != p) boundary.push_back(p); return; } bool pushed = false; bool pre = is_left(p, -1); for(int i = 0; i < len; i++) { bool cur = is_left(p, i); if(pre) { if(cur) { if(!pushed) { out.push_back(p); pushed = true; } continue; } else if(!pushed) { out.push_back(p); pushed = true; } } out.push_back(boundary[i]); pre = cur; } boundary = out; } //OPT: quickly find an obscured point and find the bounds by extending from there. then push all points not within the bounds in order. //OPT: use binary searches to find the actual starts/ends, use known rights as boundaries. may require cooperation of find_left algo. /*** ConvexHull::is_clockwise * We require that successive pairs of edges always turn right. * We return false on collinear points * proposed algorithm: walk successive edges and require triangle area is positive. */ bool ConvexHull::is_clockwise() const { if(is_degenerate()) return true; Point first = boundary[0]; Point second = boundary[1]; for(std::vector::const_iterator it(boundary.begin()+2), e(boundary.end()); it != e;) { if(SignedTriangleArea(first, second, *it) > 0) return false; first = second; second = *it; ++it; } return true; } /*** ConvexHull::top_point_first * We require that the first point in the convex hull has the least y coord, and that off all such points on the hull, it has the least x coord. * proposed algorithm: track lexicographic minimum while walking the list. */ bool ConvexHull::top_point_first() const { if(size() <= 1) return true; std::vector::const_iterator pivot = boundary.begin(); for(std::vector::const_iterator it(boundary.begin()+1), e(boundary.end()); it != e; it++) { if((*it)[1] < (*pivot)[1]) pivot = it; else if(((*it)[1] == (*pivot)[1]) && ((*it)[0] < (*pivot)[0])) pivot = it; } return pivot == boundary.begin(); } //OPT: since the Y values are orderly there should be something like a binary search to do this. bool ConvexHull::meets_invariants() const { return is_clockwise() && top_point_first(); } /*** ConvexHull::is_degenerate * We allow three degenerate cases: empty, 1 point and 2 points. In many cases these should be handled explicitly. */ bool ConvexHull::is_degenerate() const { return boundary.size() < 3; } int sgn(double x) { if(x == 0) return 0; return (x<0)?-1:1; } bool same_side(Point L[2], Point xs[4]) { int side = 0; for(int i = 0; i < 4; i++) { int sn = sgn(SignedTriangleArea(L[0], L[1], xs[i])); if(sn && !side) side = sn; else if(sn != side) return false; } return true; } /** find bridging pairs between two convex hulls. * this code is based on Hormoz Pirzadeh's masters thesis. There is room for optimisation: * 1. reduce recomputation * 2. use more efficient angle code * 3. write as iterator */ std::vector > bridges(ConvexHull a, ConvexHull b) { vector > ret; // 1. find maximal points on a and b int ai = 0, bi = 0; // 2. find first copodal pair double ap_angle = atan2(a[ai+1] - a[ai]); double bp_angle = atan2(b[bi+1] - b[bi]); Point L[2] = {a[ai], b[bi]}; while(ai < int(a.size()) || bi < int(b.size())) { if(ap_angle == bp_angle) { // In the case of parallel support lines, we must consider all four pairs of copodal points { assert(0); // untested Point xs[4] = {a[ai-1], a[ai+1], b[bi-1], b[bi+1]}; if(same_side(L, xs)) ret.push_back(make_pair(ai, bi)); xs[2] = b[bi]; xs[3] = b[bi+2]; if(same_side(L, xs)) ret.push_back(make_pair(ai, bi)); xs[0] = a[ai]; xs[1] = a[ai+2]; if(same_side(L, xs)) ret.push_back(make_pair(ai, bi)); xs[2] = b[bi-1]; xs[3] = b[bi+1]; if(same_side(L, xs)) ret.push_back(make_pair(ai, bi)); } ai++; ap_angle += angle_between(a[ai] - a[ai-1], a[ai+1] - a[ai]); L[0] = a[ai]; bi++; bp_angle += angle_between(b[bi] - b[bi-1], b[bi+1] - b[bi]); L[1] = b[bi]; std::cout << "parallel\n"; } else if(ap_angle < bp_angle) { ai++; ap_angle += angle_between(a[ai] - a[ai-1], a[ai+1] - a[ai]); L[0] = a[ai]; Point xs[4] = {a[ai-1], a[ai+1], b[bi-1], b[bi+1]}; if(same_side(L, xs)) ret.push_back(make_pair(ai, bi)); } else { bi++; bp_angle += angle_between(b[bi] - b[bi-1], b[bi+1] - b[bi]); L[1] = b[bi]; Point xs[4] = {a[ai-1], a[ai+1], b[bi-1], b[bi+1]}; if(same_side(L, xs)) ret.push_back(make_pair(ai, bi)); } } return ret; } unsigned find_bottom_right(ConvexHull const &a) { unsigned it = 1; while(it < a.boundary.size() && a.boundary[it][Y] > a.boundary[it-1][Y]) it++; return it-1; } /*** ConvexHull sweepline_intersection(ConvexHull a, ConvexHull b); * find the intersection between two convex hulls. The intersection is also a convex hull. * (Proof: take any two points both in a and in b. Any point between them is in a by convexity, * and in b by convexity, thus in both. Need to prove still finite bounds.) * This algorithm works by sweeping a line down both convex hulls in parallel, working out the left and right edges of the new hull. */ ConvexHull sweepline_intersection(ConvexHull const &a, ConvexHull const &b) { ConvexHull ret; unsigned al = 0; unsigned bl = 0; while(al+1 < a.boundary.size() && (a.boundary[al+1][Y] > b.boundary[bl][Y])) { al++; } while(bl+1 < b.boundary.size() && (b.boundary[bl+1][Y] > a.boundary[al][Y])) { bl++; } // al and bl now point to the top of the first pair of edges that overlap in y value //double sweep_y = std::min(a.boundary[al][Y], // b.boundary[bl][Y]); return ret; } /*** ConvexHull intersection(ConvexHull a, ConvexHull b); * find the intersection between two convex hulls. The intersection is also a convex hull. * (Proof: take any two points both in a and in b. Any point between them is in a by convexity, * and in b by convexity, thus in both. Need to prove still finite bounds.) */ ConvexHull intersection(ConvexHull /*a*/, ConvexHull /*b*/) { ConvexHull ret; /* int ai = 0, bi = 0; int aj = a.boundary.size() - 1; int bj = b.boundary.size() - 1; */ /*while (true) { if(a[ai] }*/ return ret; } template T idx_to_pair(pair p, int idx) { return idx?p.second:p.first; } /*** ConvexHull merge(ConvexHull a, ConvexHull b); * find the smallest convex hull that surrounds a and b. */ ConvexHull merge(ConvexHull a, ConvexHull b) { ConvexHull ret; std::cout << "---\n"; std::vector > bpair = bridges(a, b); // Given our list of bridges {(pb1, qb1), ..., (pbk, qbk)} // we start with the highest point in p0, q0, say it is p0. // then the merged hull is p0, ..., pb1, qb1, ..., qb2, pb2, ... // In other words, either of the two polygons vertices are added in order until the vertex coincides with a bridge point, at which point we swap. unsigned state = (a[0][Y] < b[0][Y])?0:1; ret.boundary.reserve(a.size() + b.size()); ConvexHull chs[2] = {a, b}; unsigned idx = 0; for(unsigned k = 0; k < bpair.size(); k++) { unsigned limit = idx_to_pair(bpair[k], state); std::cout << bpair[k].first << " , " << bpair[k].second << "; " << idx << ", " << limit << ", s: " << state << " \n"; while(idx <= limit) { ret.boundary.push_back(chs[state][idx++]); } state = 1-state; idx = idx_to_pair(bpair[k], state); } while(idx < chs[state].size()) { ret.boundary.push_back(chs[state][idx++]); } return ret; } ConvexHull graham_merge(ConvexHull a, ConvexHull b) { ConvexHull result; // we can avoid the find pivot step because of top_point_first if(b.boundary[0] <= a.boundary[0]) swap(a, b); result.boundary = a.boundary; result.boundary.insert(result.boundary.end(), b.boundary.begin(), b.boundary.end()); /** if we modified graham scan to work top to bottom as proposed in lect754.pdf we could replace the angle sort with a simple merge sort type algorithm. furthermore, we could do the graham scan online, avoiding a bunch of memory copies. That would probably be linear. -- njh*/ result.angle_sort(); result.graham_scan(); return result; } ConvexHull andrew_merge(ConvexHull a, ConvexHull b) { ConvexHull result; // we can avoid the find pivot step because of top_point_first if(b.boundary[0] <= a.boundary[0]) swap(a, b); result.boundary = a.boundary; result.boundary.insert(result.boundary.end(), b.boundary.begin(), b.boundary.end()); /** if we modified graham scan to work top to bottom as proposed in lect754.pdf we could replace the angle sort with a simple merge sort type algorithm. furthermore, we could do the graham scan online, avoiding a bunch of memory copies. That would probably be linear. -- njh*/ result.andrew_scan(); return result; } //TODO: reinstate /*ConvexCover::ConvexCover(Path const &sp) : path(&sp) { cc.reserve(sp.size()); for(Geom::Path::const_iterator it(sp.begin()), end(sp.end()); it != end; ++it) { cc.push_back(ConvexHull((*it).begin(), (*it).end())); } }*/ double ConvexHull::centroid_and_area(Geom::Point& centroid) const { const unsigned n = boundary.size(); if (n < 2) return 0; if(n < 3) { centroid = (boundary[0] + boundary[1])/2; return 0; } Geom::Point centroid_tmp(0,0); double atmp = 0; for (unsigned i = n-1, j = 0; j < n; i = j, j++) { const double ai = cross(boundary[j], boundary[i]); atmp += ai; centroid_tmp += (boundary[j] + boundary[i])*ai; // first moment. } if (atmp != 0) { centroid = centroid_tmp / (3 * atmp); } return atmp / 2; } // TODO: This can be made lg(n) using golden section/fibonacci search three starting points, say 0, // n/2, n-1 construct a new point, say (n/2 + n)/2 throw away the furthest boundary point iterate // until interval is a single value Point const * ConvexHull::furthest(Point direction) const { Point const * p = &boundary[0]; double d = dot(*p, direction); for(unsigned i = 1; i < boundary.size(); i++) { double dd = dot(boundary[i], direction); if(d < dd) { p = &boundary[i]; d = dd; } } return p; } // returns (a, (b,c)), three points which define the narrowest diameter of the hull as the pair of // lines going through b,c, and through a, parallel to b,c TODO: This can be made linear time by // moving point tc incrementally from the previous value (it can only move in one direction). It // is currently n*O(furthest) double ConvexHull::narrowest_diameter(Point &a, Point &b, Point &c) { Point tb = boundary.back(); double d = std::numeric_limits::max(); for(unsigned i = 0; i < boundary.size(); i++) { Point tc = boundary[i]; Point n = -rot90(tb-tc); Point ta = *furthest(n); double td = dot(n, ta-tb)/dot(n,n); if(td < d) { a = ta; b = tb; c = tc; d = td; } tb = tc; } return d; } #endif }; /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :