/* Abstract curve type - implementation of default methods * * Authors: * MenTaLguY * Marco Cecchetti * Krzysztof Kosiński * Rafał Siejakowski * * Copyright 2007-2009 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/curve.h> #include <2geom/exception.h> #include <2geom/nearest-time.h> #include <2geom/sbasis-geometric.h> #include <2geom/sbasis-to-bezier.h> #include <2geom/ord.h> #include <2geom/path-sink.h> namespace Geom { Coord Curve::nearestTime(Point const& p, Coord a, Coord b) const { return nearest_time(p, toSBasis(), a, b); } std::vector Curve::allNearestTimes(Point const& p, Coord from, Coord to) const { return all_nearest_times(p, toSBasis(), from, to); } Coord Curve::length(Coord tolerance) const { return ::Geom::length(toSBasis(), tolerance); } int Curve::winding(Point const &p) const { try { std::vector ts = roots(p[Y], Y); if(ts.empty()) return 0; std::sort(ts.begin(), ts.end()); // skip endpoint roots when they are local maxima on the Y axis // this follows the convention used in other winding routines, // i.e. that the bottommost coordinate is not part of the shape bool ignore_0 = unitTangentAt(0)[Y] <= 0; bool ignore_1 = unitTangentAt(1)[Y] >= 0; int wind = 0; for (double t : ts) { //std::cout << t << std::endl; if ((t == 0 && ignore_0) || (t == 1 && ignore_1)) continue; if (valueAt(t, X) > p[X]) { // root is ray intersection Point tangent = unitTangentAt(t); if (tangent[Y] > 0) { // at the point of intersection, curve goes in +Y direction, // so it winds in the direction of positive angles ++wind; } else if (tangent[Y] < 0) { --wind; } } } return wind; } catch (InfiniteSolutions const &e) { // this means we encountered a line segment exactly coincident with the point // skip, since this will be taken care of by endpoint roots in other segments return 0; } } std::vector Curve::intersect(Curve const &/*other*/, Coord /*eps*/) const { // TODO: approximate as Bezier THROW_NOTIMPLEMENTED(); } std::vector Curve::intersectSelf(Coord eps) const { /// Represents a sub-arc of the curve. struct Subcurve { std::unique_ptr curve; Interval parameter_range; Subcurve(Curve *piece, Coord from, Coord to) : curve{piece} , parameter_range{from, to} {} }; /// A closure to split the curve into portions at the prescribed split points. auto const split_into_subcurves = [=](std::vector const &splits) { std::vector result; result.reserve(splits.size() + 1); Coord previous = 0; for (Coord split : splits) { // Use global EPSILON since we're operating on normalized curve times. if (split < EPSILON || split > 1.0 - EPSILON) { continue; } result.emplace_back(portion(previous, split), previous, split); previous = split; } result.emplace_back(portion(previous, 1.0), previous, 1.0); return result; }; /// A closure to find pairwise intersections between the passed subcurves. auto const pairwise_intersect = [=](std::vector const &subcurves) { std::vector result; for (unsigned i = 0; i < subcurves.size(); i++) { for (unsigned j = i + 1; j < subcurves.size(); j++) { auto const xings = subcurves[i].curve->intersect(*subcurves[j].curve, eps); for (auto const &xing : xings) { // To avoid duplicate intersections, skip values at exactly 1. if (xing.first == 1. || xing.second == 1.) { continue; } Coord const ti = subcurves[i].parameter_range.valueAt(xing.first); Coord const tj = subcurves[j].parameter_range.valueAt(xing.second); result.emplace_back(ti, tj, xing.point()); } } } std::sort(result.begin(), result.end()); return result; }; // Monotonic segments cannot have self-intersections. Thus, we can split // the curve at critical points of the X or Y coordinate and intersect // the portions. However, there's the risk that a juncture between two // adjacent portions is mistaken for an intersection due to numerical errors. // Hence, we run the algorithm for both the X and Y coordinates and only // keep the intersections that show up in both intersection lists. // Find the critical points of both coordinates. std::unique_ptr deriv{derivative()}; auto const crits_x = deriv->roots(0, X); auto const crits_y = deriv->roots(0, Y); if (crits_x.empty() || crits_y.empty()) { return {}; } // Split into pieces in two ways and find self-intersections. auto const pieces_x = split_into_subcurves(crits_x); auto const pieces_y = split_into_subcurves(crits_y); auto const crossings_from_x = pairwise_intersect(pieces_x); auto const crossings_from_y = pairwise_intersect(pieces_y); if (crossings_from_x.empty() || crossings_from_y.empty()) { return {}; } // Filter the results, only keeping self-intersections found by both approaches. std::vector result; unsigned index_y = 0; for (auto &&candidate_x : crossings_from_x) { // Find a crossing corresponding to this one in the y-method collection. while (index_y != crossings_from_y.size()) { auto const gap = crossings_from_y[index_y].first - candidate_x.first; if (std::abs(gap) < EPSILON) { // We found the matching intersection! result.emplace_back(candidate_x); index_y++; break; } else if (gap < 0.0) { index_y++; } else { break; } } } return result; } Point Curve::unitTangentAt(Coord t, unsigned n) const { std::vector derivs = pointAndDerivatives(t, n); for (unsigned deriv_n = 1; deriv_n < derivs.size(); deriv_n++) { Coord length = derivs[deriv_n].length(); if ( ! are_near(length, 0) ) { // length of derivative is non-zero, so return unit vector return derivs[deriv_n] / length; } } return Point (0,0); }; void Curve::feed(PathSink &sink, bool moveto_initial) const { std::vector pts; sbasis_to_bezier(pts, toSBasis(), 2); //TODO: use something better! if (moveto_initial) { sink.moveTo(initialPoint()); } sink.curveTo(pts[0], pts[1], pts[2]); } } // namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :