/** @file * @brief Ellipse shape *//* * Authors: * Marco Cecchetti * Krzysztof Kosiński * * Copyright 2008-2014 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/conicsec.h> #include <2geom/ellipse.h> #include <2geom/elliptical-arc.h> #include <2geom/numeric/fitting-tool.h> #include <2geom/numeric/fitting-model.h> namespace Geom { Ellipse::Ellipse(Geom::Circle const &c) : _center(c.center()) , _rays(c.radius(), c.radius()) , _angle(0) {} void Ellipse::setCoefficients(double A, double B, double C, double D, double E, double F) { double den = 4*A*C - B*B; if (den == 0) { THROW_RANGEERROR("den == 0, while computing ellipse centre"); } _center[X] = (B*E - 2*C*D) / den; _center[Y] = (B*D - 2*A*E) / den; // evaluate the a coefficient of the ellipse equation in normal form // E(x,y) = a*(x-cx)^2 + b*(x-cx)*(y-cy) + c*(y-cy)^2 = 1 // where b = a*B , c = a*C, (cx,cy) == centre double num = A * sqr(_center[X]) + B * _center[X] * _center[Y] + C * sqr(_center[Y]) - F; //evaluate ellipse rotation angle _angle = std::atan2( -B, -(A - C) )/2; // evaluate the length of the ellipse rays double sinrot, cosrot; sincos(_angle, sinrot, cosrot); double cos2 = cosrot * cosrot; double sin2 = sinrot * sinrot; double cossin = cosrot * sinrot; den = A * cos2 + B * cossin + C * sin2; if (den == 0) { THROW_RANGEERROR("den == 0, while computing 'rx' coefficient"); } double rx2 = num / den; if (rx2 < 0) { THROW_RANGEERROR("rx2 < 0, while computing 'rx' coefficient"); } _rays[X] = std::sqrt(rx2); den = C * cos2 - B * cossin + A * sin2; if (den == 0) { THROW_RANGEERROR("den == 0, while computing 'ry' coefficient"); } double ry2 = num / den; if (ry2 < 0) { THROW_RANGEERROR("ry2 < 0, while computing 'rx' coefficient"); } _rays[Y] = std::sqrt(ry2); // the solution is not unique so we choose always the ellipse // with a rotation angle between 0 and PI/2 makeCanonical(); } Point Ellipse::initialPoint() const { Coord sinrot, cosrot; sincos(_angle, sinrot, cosrot); Point p(ray(X) * cosrot + center(X), ray(X) * sinrot + center(Y)); return p; } Affine Ellipse::unitCircleTransform() const { Affine ret = Scale(ray(X), ray(Y)) * Rotate(_angle); ret.setTranslation(center()); return ret; } Affine Ellipse::inverseUnitCircleTransform() const { if (ray(X) == 0 || ray(Y) == 0) { THROW_RANGEERROR("a degenerate ellipse doesn't have an inverse unit circle transform"); } Affine ret = Translate(-center()) * Rotate(-_angle) * Scale(1/ray(X), 1/ray(Y)); return ret; } LineSegment Ellipse::axis(Dim2 d) const { Point a(0, 0), b(0, 0); a[d] = -1; b[d] = 1; LineSegment ls(a, b); ls.transform(unitCircleTransform()); return ls; } LineSegment Ellipse::semiaxis(Dim2 d, int sign) const { Point a(0, 0), b(0, 0); b[d] = sgn(sign); LineSegment ls(a, b); ls.transform(unitCircleTransform()); return ls; } Rect Ellipse::boundsExact() const { auto const trans = unitCircleTransform(); auto proj_bounds = [&] (Dim2 d) { // The dth coordinate function pulls back to trans[d] * x + trans[d + 2] * y + trans[d + 4] // in the coordinate system where the ellipse is a unit circle. We compute its range of // values on the unit circle. auto const r = std::hypot(trans[d], trans[d + 2]); auto const mid = trans[d + 4]; return Interval(mid - r, mid + r); }; return { proj_bounds(X), proj_bounds(Y) }; } Rect Ellipse::boundsFast() const { // Every ellipse is contained in the circle with the same center and radius // equal to the larger of the two rays. We return the bounding square // of this circle (this is really fast but only exact for circles). auto const larger_ray = (ray(X) > ray(Y) ? ray(X) : ray(Y)); assert(larger_ray >= 0.0); auto const rr = Point(larger_ray, larger_ray); return Rect(_center - rr, _center + rr); } std::vector Ellipse::coefficients() const { std::vector c(6); coefficients(c[0], c[1], c[2], c[3], c[4], c[5]); return c; } void Ellipse::coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const { if (ray(X) == 0 || ray(Y) == 0) { THROW_RANGEERROR("a degenerate ellipse doesn't have an implicit form"); } double cosrot, sinrot; sincos(_angle, sinrot, cosrot); double cos2 = cosrot * cosrot; double sin2 = sinrot * sinrot; double cossin = cosrot * sinrot; double invrx2 = 1 / (ray(X) * ray(X)); double invry2 = 1 / (ray(Y) * ray(Y)); A = invrx2 * cos2 + invry2 * sin2; B = 2 * (invrx2 - invry2) * cossin; C = invrx2 * sin2 + invry2 * cos2; D = -2 * A * center(X) - B * center(Y); E = -2 * C * center(Y) - B * center(X); F = A * center(X) * center(X) + B * center(X) * center(Y) + C * center(Y) * center(Y) - 1; } void Ellipse::fit(std::vector const &points) { size_t sz = points.size(); if (sz < 5) { THROW_RANGEERROR("fitting error: too few points passed"); } NL::LFMEllipse model; NL::least_squeares_fitter fitter(model, sz); for (size_t i = 0; i < sz; ++i) { fitter.append(points[i]); } fitter.update(); NL::Vector z(sz, 0.0); model.instance(*this, fitter.result(z)); } EllipticalArc * Ellipse::arc(Point const &ip, Point const &inner, Point const &fp) { // This is resistant to degenerate ellipses: // both flags evaluate to false in that case. bool large_arc_flag = false; bool sweep_flag = false; // Determination of large arc flag: // large_arc is false when the inner point is on the same side // of the center---initial point line as the final point, AND // is on the same side of the center---final point line as the // initial point. // Additionally, large_arc is always false when we have exactly // 1/2 of an arc, i.e. the cross product of the center -> initial point // and center -> final point vectors is zero. // Negating the above leads to the condition for large_arc being true. Point fv = fp - _center; Point iv = ip - _center; Point innerv = inner - _center; double ifcp = cross(fv, iv); if (ifcp != 0 && (sgn(cross(fv, innerv)) != sgn(ifcp) || sgn(cross(iv, innerv)) != sgn(-ifcp))) { large_arc_flag = true; } // Determination of sweep flag: // For clarity, let's assume that Y grows up. Then the cross product // is positive for points on the left side of a vector and negative // on the right side of a vector. // // cross(?, v) > 0 // o-------------------> // cross(?, v) < 0 // // If the arc is small (large_arc_flag is false) and the final point // is on the right side of the vector initial point -> center, // we have to go in the direction of increasing angles // (counter-clockwise) and the sweep flag is true. // If the arc is large, the opposite is true, since we have to reach // the final point going the long way - in the other direction. // We can express this observation as: // cross(_center - ip, fp - _center) < 0 xor large_arc flag // This is equal to: // cross(-iv, fv) < 0 xor large_arc flag // But cross(-iv, fv) is equal to cross(fv, iv) due to antisymmetry // of the cross product, so we end up with the condition below. if ((ifcp < 0) ^ large_arc_flag) { sweep_flag = true; } EllipticalArc *ret_arc = new EllipticalArc(ip, ray(X), ray(Y), rotationAngle(), large_arc_flag, sweep_flag, fp); return ret_arc; } Ellipse &Ellipse::operator*=(Rotate const &r) { _angle += r.angle(); _center *= r; return *this; } Ellipse &Ellipse::operator*=(Affine const& m) { Affine a = Scale(ray(X), ray(Y)) * Rotate(_angle); Affine mwot = m.withoutTranslation(); Affine am = a * mwot; Point new_center = _center * m; if (are_near(am.descrim(), 0)) { double angle; if (am[0] != 0) { angle = std::atan2(am[2], am[0]); } else if (am[1] != 0) { angle = std::atan2(am[3], am[1]); } else { angle = M_PI/2; } Point v = Point::polar(angle) * am; _center = new_center; _rays[X] = L2(v); _rays[Y] = 0; _angle = atan2(v); return *this; } else if (mwot.isScale(0) && _angle.radians() == 0) { _rays[X] *= std::abs(mwot[0]); _rays[Y] *= std::abs(mwot[3]); _center = new_center; return *this; } std::vector coeff = coefficients(); Affine q( coeff[0], coeff[1]/2, coeff[1]/2, coeff[2], 0, 0 ); Affine invm = mwot.inverse(); q = invm * q ; std::swap(invm[1], invm[2]); q *= invm; setCoefficients(q[0], 2*q[1], q[3], 0, 0, -1); _center = new_center; return *this; } Ellipse Ellipse::canonicalForm() const { Ellipse result(*this); result.makeCanonical(); return result; } void Ellipse::makeCanonical() { if (_rays[X] == _rays[Y]) { _angle = 0; return; } if (_angle < 0) { _angle += M_PI; } if (_angle >= M_PI/2) { std::swap(_rays[X], _rays[Y]); _angle -= M_PI/2; } } Point Ellipse::pointAt(Coord t) const { Point p = Point::polar(t); p *= unitCircleTransform(); return p; } Coord Ellipse::valueAt(Coord t, Dim2 d) const { Coord sinrot, cosrot, cost, sint; sincos(rotationAngle(), sinrot, cosrot); sincos(t, sint, cost); if ( d == X ) { return ray(X) * cosrot * cost - ray(Y) * sinrot * sint + center(X); } else { return ray(X) * sinrot * cost + ray(Y) * cosrot * sint + center(Y); } } Coord Ellipse::timeAt(Point const &p) const { // degenerate ellipse is basically a reparametrized line segment if (ray(X) == 0 || ray(Y) == 0) { if (ray(X) != 0) { return asin(Line(axis(X)).timeAt(p)); } else if (ray(Y) != 0) { return acos(Line(axis(Y)).timeAt(p)); } else { return 0; } } Affine iuct = inverseUnitCircleTransform(); return Angle(atan2(p * iuct)).radians0(); // return a value in [0, 2pi) } Point Ellipse::unitTangentAt(Coord t) const { Point p = Point::polar(t + M_PI/2); p *= unitCircleTransform().withoutTranslation(); p.normalize(); return p; } bool Ellipse::contains(Point const &p) const { Point tp = p * inverseUnitCircleTransform(); return tp.length() <= 1; } /** @brief Convert curve time on the major axis to the corresponding angle * parameters on a degenerate ellipse collapsed onto that axis. * @param t The curve time on the major axis of an ellipse. * @param vertical If true, the major axis goes from angle -π/2 to +π/2; * otherwise, the major axis connects angles π and 0. * @return The two angles at which the collapsed ellipse passes through the * major axis point corresponding to the given time \f$t \in [0, 1]\f$. */ static std::array axis_time_to_angles(Coord t, bool vertical) { Coord const to_unit = std::clamp(2.0 * t - 1.0, -1.0, 1.0); if (vertical) { double const arcsin = std::asin(to_unit); return {arcsin, M_PI - arcsin}; } else { double const arccos = std::acos(to_unit); return {arccos, -arccos}; } } /** @brief For each intersection of some shape with the major axis of an ellipse, produce one or two * intersections of a degenerate ellipse (collapsed onto that axis) with the same shape. * * @param axis_intersections The intersections of some shape with the major axis. * @param vertical Whether this is the vertical major axis (in the ellipse's natural coordinates). * @return A vector with doubled intersections (corresponding to the two passages of the squashed * ellipse through that point) and swapped order of the intersected shapes. */ static std::vector double_axis_intersections(std::vector &&axis_intersections, bool vertical) { if (axis_intersections.empty()) { return {}; } std::vector result; result.reserve(2 * axis_intersections.size()); for (auto const &x : axis_intersections) { for (auto a : axis_time_to_angles(x.second, vertical)) { result.emplace_back(a, x.first, x.point()); // Swap first <-> converted second. if (x.second == 0.0 || x.second == 1.0) { break; // Do not double up endpoint intersections. } } } return result; } std::vector Ellipse::intersect(Line const &line) const { std::vector result; if (line.isDegenerate()) { return result; } if (ray(X) == 0 || ray(Y) == 0) { return double_axis_intersections(line.intersect(majorAxis()), ray(X) == 0); } // Ax^2 + Bxy + Cy^2 + Dx + Ey + F std::array coeffs; coefficients(coeffs[0], coeffs[1], coeffs[2], coeffs[3], coeffs[4], coeffs[5]); rescale_homogenous(coeffs); auto [A, B, C, D, E, F] = coeffs; Affine iuct = inverseUnitCircleTransform(); // generic case std::array line_coeffs; line.coefficients(line_coeffs[0], line_coeffs[1], line_coeffs[2]); rescale_homogenous(line_coeffs); auto [a, b, c] = line_coeffs; Point lv = line.vector(); if (fabs(lv[X]) > fabs(lv[Y])) { // y = -a/b x - c/b Coord q = -a/b; Coord r = -c/b; // substitute that into the ellipse equation, making it quadratic in x Coord I = A + B*q + C*q*q; // x^2 terms Coord J = B*r + C*2*q*r + D + E*q; // x^1 terms Coord K = C*r*r + E*r + F; // x^0 terms std::vector xs = solve_quadratic(I, J, K); for (double x : xs) { Point p(x, q*x + r); result.emplace_back(atan2(p * iuct), line.timeAt(p), p); } } else { Coord q = -b/a; Coord r = -c/a; Coord I = A*q*q + B*q + C; Coord J = A*2*q*r + B*r + D*q + E; Coord K = A*r*r + D*r + F; std::vector xs = solve_quadratic(I, J, K); for (double x : xs) { Point p(q*x + r, x); result.emplace_back(atan2(p * iuct), line.timeAt(p), p); } } return result; } std::vector Ellipse::intersect(LineSegment const &seg) const { if (!boundsFast().intersects(seg.boundsFast())) { return {}; } // We simply reuse the procedure for lines and filter out // results where the line time value is outside of the unit interval, // but we apply a small tolerance to account for numerical errors. double const param_prec = EPSILON / seg.length(0.0); // TODO: accept a precision setting instead of always using EPSILON // (requires an ABI break). auto xings = intersect(Line(seg)); if (xings.empty()) { return xings; } decltype(xings) result; result.reserve(xings.size()); for (auto const &x : xings) { if (x.second < -param_prec || x.second > 1.0 + param_prec) { continue; } result.emplace_back(x.first, std::clamp(x.second, 0.0, 1.0), x.point()); } return result; } std::vector Ellipse::intersect(Ellipse const &other) const { // Handle degenerate cases first. if (ray(X) == 0 || ray(Y) == 0) { // Degenerate ellipse, collapsed to the major axis. return double_axis_intersections(other.intersect(majorAxis()), ray(X) == 0); } if (*this == other) { // Two identical ellipses. THROW_INFINITELY_MANY_SOLUTIONS("The two ellipses are identical."); } if (!boundsFast().intersects(other.boundsFast())) { return {}; } // Find coefficients of the implicit equations of the two ellipses and rescale // them (losslessly) for better numerical conditioning. std::array coeffs; coefficients(coeffs[0], coeffs[1], coeffs[2], coeffs[3], coeffs[4], coeffs[5]); rescale_homogenous(coeffs); auto [A, B, C, D, E, F] = coeffs; std::array otheffs; other.coefficients(otheffs[0], otheffs[1], otheffs[2], otheffs[3], otheffs[4], otheffs[5]); rescale_homogenous(otheffs); auto [a, b, c, d, e, f] = otheffs; // Assume that Q(x, y) = 0 is the ellipse equation given by uppercase letters // and R(x, y) = 0 is the equation given by lowercase ones. // In other words, Q is the quadratic function describing this ellipse and // R is the quadratic function for the other ellipse. // // A point (x, y) is common to both ellipses if and only if it solves the system // { Q(x, y) = 0, // { R(x, y) = 0. // // If µ is any real number, we can multiply the first equation by µ and add that // to the first equation, obtaining the new system of equations: // { Q(x, y) = 0, // { µQ(x, y) + R(x, y) = 0. // // The first equation still says that (x, y) is a point on this ellipse, but the // second equation uses the new expression (µQ + R) instead of the original R. // // Why do we do this? The reason is that the set of functions {µQ + R : µ real} // is a "real system of conics" and there's a theorem which guarantees that such a system // always contains a "degenerate conic" [proof below]. // In practice, the degenerate conic will describe a line or a pair of lines, and intersecting // a line with an ellipse is much easier than intersecting two ellipses directly. // // But in order to be able to do this, we must find a value of µ for which µQ + R is degenerate. // We can write the expression (µQ + R)(x, y) in the following way: // // | aa bb/2 dd/2 | |x| // (µQ + R)(x, y) = [x y 1] | bb/2 cc ee/2 | |y| // | dd/2 ee/2 ff | |1| // // where aa = µA + a and so on. The determinant can be explicitly written out, // giving an equation which is cubic in µ and can be solved analytically. // The conic µQ + R is degenerate if and only if this determinant is 0. // // Proof that there's always a degenerate conic: a cubic real polynomial always has a root, // and if the polynomial in µ isn't cubic (coefficient of µ^3 is zero), then the starting // conic is already degenerate. Coord I, J, K, L; // Coefficients of µ in the expression for the determinant. I = (-B*B*F + 4*A*C*F + D*E*B - A*E*E - C*D*D) / 4; J = -((B*B - 4*A*C) * f + (2*B*F - D*E) * b + (2*A*E - D*B) * e + (2*C*D - E*B) * d + (D*D - 4*A*F) * c + (E*E - 4*C*F) * a) / 4; K = -((b*b - 4*a*c) * F + (2*b*f - d*e) * B + (2*a*e - d*b) * E + (2*c*d - e*b) * D + (d*d - 4*a*f) * C + (e*e - 4*c*f) * A) / 4; L = (-b*b*f + 4*a*c*f + d*e*b - a*e*e - c*d*d) / 4; std::vector mus = solve_cubic(I, J, K, L); Coord mu = infinity(); // Now that we have solved for µ, we need to check whether the conic // determined by µQ + R is reducible to a product of two lines. If it's not, // it means that there are no intersections. If it is, the intersections of these // lines with the original ellipses (if there are any) give the coordinates // of intersections. // Prefer middle root if there are three. // Out of three possible pairs of lines that go through four points of intersection // of two ellipses, this corresponds to cross-lines. These intersect the ellipses // at less shallow angles than the other two options. if (mus.size() == 3) { std::swap(mus[1], mus[0]); } /// Discriminant within this radius of 0 will be considered zero. static Coord const discriminant_precision = 1e-10; for (Coord candidate_mu : mus) { Coord const aa = std::fma(candidate_mu, A, a); Coord const bb = std::fma(candidate_mu, B, b); Coord const cc = std::fma(candidate_mu, C, c); Coord const delta = sqr(bb) - 4*aa*cc; if (delta < -discriminant_precision) { continue; } mu = candidate_mu; break; } // if no suitable mu was found, there are no intersections if (mu == infinity()) { return {}; } // Create the degenerate conic and decompose it into lines. std::array degen = {std::fma(mu, A, a), std::fma(mu, B, b), std::fma(mu, C, c), std::fma(mu, D, d), std::fma(mu, E, e), std::fma(mu, F, f)}; rescale_homogenous(degen); auto const lines = xAx(degen[0], degen[1], degen[2], degen[3], degen[4], degen[5]).decompose_df(discriminant_precision); // intersect with the obtained lines and report intersections std::vector result; for (auto const &line : lines) { if (line.isDegenerate()) { continue; } auto as = intersect(line); // NOTE: If we only cared about the intersection points, we could simply // intersect this ellipse with the lines and ignore the other ellipse. // But we need the time coordinates on the other ellipse as well. auto bs = other.intersect(line); if (as.empty() || bs.empty()) { continue; } // Due to numerical errors, a tangency may sometimes be found as 1 intersection // on one ellipse and 2 intersections on the other. If this happens, we average // the points of the two intersections. auto const intersection_average = [](ShapeIntersection const &i, ShapeIntersection const &j) -> ShapeIntersection { return ShapeIntersection(i.first, j.first, middle_point(i.point(), j.point())); }; auto const synthesize_intersection = [&](ShapeIntersection const &i, ShapeIntersection const &j) -> void { result.emplace_back(i.first, j.first, middle_point(i.point(), j.point())); }; if (as.size() == 2) { if (bs.size() == 2) { synthesize_intersection(as[0], bs[0]); synthesize_intersection(as[1], bs[1]); } else if (bs.size() == 1) { synthesize_intersection(intersection_average(as[0], as[1]), bs[0]); } } else if (as.size() == 1) { if (bs.size() == 2) { synthesize_intersection(as[0], intersection_average(bs[0], bs[1])); } else if (bs.size() == 1) { synthesize_intersection(as[0], bs[0]); } } } return result; } std::vector Ellipse::intersect(D2 const &b) const { Coord A, B, C, D, E, F; coefficients(A, B, C, D, E, F); // We plug the X and Y curves into the implicit equation and solve for t. Bezier x = A*b[X]*b[X] + B*b[X]*b[Y] + C*b[Y]*b[Y] + D*b[X] + E*b[Y] + F; std::vector r = x.roots(); std::vector result; for (double & i : r) { Point p = b.valueAt(i); result.emplace_back(timeAt(p), i, p); } return result; } bool Ellipse::operator==(Ellipse const &other) const { if (_center != other._center) return false; Ellipse a = this->canonicalForm(); Ellipse b = other.canonicalForm(); if (a._rays != b._rays) return false; if (a._angle != b._angle) return false; return true; } bool are_near(Ellipse const &a, Ellipse const &b, Coord precision) { // We want to know whether no point on ellipse a is further than precision // from the corresponding point on ellipse b. To check this, we compute // the four extreme points at the end of each ray for each ellipse // and check whether they are sufficiently close. // First, we need to correct the angles on the ellipses, so that they are // no further than M_PI/4 apart. This can always be done by rotating // and exchanging axes. Ellipse ac = a, bc = b; if (distance(ac.rotationAngle(), bc.rotationAngle()).radians0() >= M_PI/2) { ac.setRotationAngle(ac.rotationAngle() + M_PI); } if (distance(ac.rotationAngle(), bc.rotationAngle()) >= M_PI/4) { Angle d1 = distance(ac.rotationAngle() + M_PI/2, bc.rotationAngle()); Angle d2 = distance(ac.rotationAngle() - M_PI/2, bc.rotationAngle()); Coord adj = d1.radians0() < d2.radians0() ? M_PI/2 : -M_PI/2; ac.setRotationAngle(ac.rotationAngle() + adj); ac.setRays(ac.ray(Y), ac.ray(X)); } // Do the actual comparison by computing four points on each ellipse. Point tps[] = {Point(1,0), Point(0,1), Point(-1,0), Point(0,-1)}; for (auto & tp : tps) { if (!are_near(tp * ac.unitCircleTransform(), tp * bc.unitCircleTransform(), precision)) return false; } return true; } std::ostream &operator<<(std::ostream &out, Ellipse const &e) { out << "Ellipse(" << e.center() << ", " << e.rays() << ", " << format_coord_nice(e.rotationAngle()) << ")"; return out; } } // end namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :