/** * \file * \brief Intersection graph for Boolean operations *//* * Authors: * Krzysztof Kosiński * * Copyright 2015 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/intersection-graph.h> #include <2geom/path.h> #include <2geom/pathvector.h> #include <2geom/utils.h> #include #include namespace Geom { /// Function object for comparing intersection vertices based on the intersection time. struct PathIntersectionGraph::IntersectionVertexLess { bool operator()(IntersectionVertex const &a, IntersectionVertex const &b) const { return a.pos < b.pos; } }; PathIntersectionGraph::PathIntersectionGraph(PathVector const &a, PathVector const &b, Coord precision) : _graph_valid(true) { _pv[0] = a; _pv[1] = b; if (a.empty() || b.empty()) return; _prepareArguments(); bool has_intersections = _prepareIntersectionLists(precision); if (!has_intersections) return; _assignEdgeWindingParities(precision); // If a path has only degenerate intersections, assign its status now. // This protects against later accidentally picking a point for winding // determination that is exactly at a removed intersection. _assignComponentStatusFromDegenerateIntersections(); _removeDegenerateIntersections(); if (_graph_valid) { _verify(); } } /** Prepare the operands stored in PathIntersectionGraph::_pv by closing all of their constituent * paths and removing degenerate segments from them. */ void PathIntersectionGraph::_prepareArguments() { // all paths must be closed, otherwise we will miss some intersections for (auto & w : _pv) { for (auto & i : w) { i.close(); } } // remove degenerate segments for (auto & w : _pv) { for (std::size_t i = w.size(); i > 0; --i) { if (w[i-1].empty()) { w.erase(w.begin() + (i-1)); continue; } for (std::size_t j = w[i-1].size(); j > 0; --j) { if (w[i-1][j-1].isDegenerate()) { w[i-1].erase(w[i-1].begin() + (j-1)); } } } } } /** @brief Compute the lists of intersections between the constituent paths of both operands. * @param precision – the precision setting for the sweepline algorithm. * @return Whether any intersections were found. */ bool PathIntersectionGraph::_prepareIntersectionLists(Coord precision) { std::vector pxs = _pv[0].intersect(_pv[1], precision); // NOTE: this early return means that the path data structures will not be created // if there are no intersections at all! if (pxs.empty()) return false; // prepare intersection lists for each path component for (unsigned w = 0; w < 2; ++w) { for (std::size_t i = 0; i < _pv[w].size(); ++i) { _components[w].push_back(new PathData(w, i)); } } // create intersection vertices for (auto & px : pxs) { IntersectionVertex *xa, *xb; xa = new IntersectionVertex(); xb = new IntersectionVertex(); //xa->processed = xb->processed = false; xa->which = 0; xb->which = 1; xa->pos = px.first; xb->pos = px.second; xa->p = xb->p = px.point(); xa->neighbor = xb; xb->neighbor = xa; xa->next_edge = xb->next_edge = OUTSIDE; xa->defective = xb->defective = false; _xs.push_back(xa); _xs.push_back(xb); _components[0][xa->pos.path_index].xlist.push_back(*xa); _components[1][xb->pos.path_index].xlist.push_back(*xb); } // sort intersections in each component according to time value for (auto & _component : _components) { for (std::size_t i = 0; i < _component.size(); ++i) { _component[i].xlist.sort(IntersectionVertexLess()); } } return true; } /** Determine whether path portions between consecutive intersections lie inside or outside * of the other path-vector. */ void PathIntersectionGraph::_assignEdgeWindingParities(Coord precision) { for (unsigned w = 0; w < 2; ++w) { unsigned ow = (w+1) % 2; ///< The index of the other operand for (unsigned li = 0; li < _components[w].size(); ++li) { // Traverse all paths in the component IntersectionList &xl = _components[w][li].xlist; for (ILIter i = xl.begin(); i != xl.end(); ++i) { // Traverse all intersections in the path ILIter n = cyclic_next(i, xl); std::size_t pi = i->pos.path_index; /// Path time interval from the current crossing to the next one PathInterval ival = forward_interval(i->pos, n->pos, _pv[w][pi].size()); PathTime mid = ival.inside(precision); Point wpoint = _pv[w][pi].pointAt(mid); _winding_points.push_back(wpoint); int wdg = _pv[ow].winding(wpoint); if (wdg % 2) { i->next_edge = INSIDE; } else { i->next_edge = OUTSIDE; } } } } } /** Detect the situation where a path is either entirely inside or entirely outside of the other * path-vector and set the status flag accordingly. */ void PathIntersectionGraph::_assignComponentStatusFromDegenerateIntersections() { for (auto & _component : _components) { for (unsigned li = 0; li < _component.size(); ++li) { IntersectionList &xl = _component[li].xlist; bool has_in = false; bool has_out = false; for (auto & i : xl) { has_in |= (i.next_edge == INSIDE); has_out |= (i.next_edge == OUTSIDE); } if (has_in && !has_out) { _component[li].status = INSIDE; } if (!has_in && has_out) { _component[li].status = OUTSIDE; } } } } /** Remove intersections that don't change between in/out. * * In general, a degenerate intersection can happen at a point where * two shapes "kiss" (are tangent) but do not cross into each other. */ void PathIntersectionGraph::_removeDegenerateIntersections() { for (auto & _component : _components) { for (unsigned li = 0; li < _component.size(); ++li) { IntersectionList &xl = _component[li].xlist; for (ILIter i = xl.begin(); i != xl.end();) { ILIter n = cyclic_next(i, xl); if (i->next_edge == n->next_edge) { // Both edges inside or both outside bool last_node = (i == n); ///< Whether this is the last remaining crossing. ILIter nn = _getNeighbor(n); IntersectionList &oxl = _getPathData(nn).xlist; // When exactly 3 out of 4 edges adjacent to an intersection // have the same winding, we have a defective intersection, // which is neither degenerate nor normal. Those can occur in paths // that contain overlapping segments. if (cyclic_prior(nn, oxl)->next_edge != nn->next_edge) { // Not a backtrack - set the defective flag. _graph_valid = false; n->defective = true; nn->defective = true; ++i; continue; } // Erase the degenerate or defective crossings oxl.erase(nn); xl.erase(n); if (last_node) break; } else { ++i; } } } } } /** Verify that all paths contain an even number of intersections and that * the intersection graph does not contain leaves (degree one vertices). */ void PathIntersectionGraph::_verify() { #ifndef NDEBUG for (auto & _component : _components) { for (unsigned li = 0; li < _component.size(); ++li) { IntersectionList &xl = _component[li].xlist; assert(xl.size() % 2 == 0); for (ILIter i = xl.begin(); i != xl.end(); ++i) { ILIter j = cyclic_next(i, xl); assert(i->next_edge != j->next_edge); } } } #endif } PathVector PathIntersectionGraph::getUnion() { PathVector result = _getResult(false, false); _handleNonintersectingPaths(result, 0, false); _handleNonintersectingPaths(result, 1, false); return result; } PathVector PathIntersectionGraph::getIntersection() { PathVector result = _getResult(true, true); _handleNonintersectingPaths(result, 0, true); _handleNonintersectingPaths(result, 1, true); return result; } PathVector PathIntersectionGraph::getAminusB() { PathVector result = _getResult(false, true); _handleNonintersectingPaths(result, 0, false); _handleNonintersectingPaths(result, 1, true); return result; } PathVector PathIntersectionGraph::getBminusA() { PathVector result = _getResult(true, false); _handleNonintersectingPaths(result, 1, false); _handleNonintersectingPaths(result, 0, true); return result; } PathVector PathIntersectionGraph::getXOR() { PathVector r1, r2; r1 = getAminusB(); r2 = getBminusA(); std::copy(r2.begin(), r2.end(), std::back_inserter(r1)); return r1; } std::size_t PathIntersectionGraph::size() const { std::size_t result = 0; for (std::size_t i = 0; i < _components[0].size(); ++i) { result += _components[0][i].xlist.size(); } return result; } std::vector PathIntersectionGraph::intersectionPoints(bool defective) const { std::vector result; for (std::size_t i = 0; i < _components[0].size(); ++i) { for (const auto & j : _components[0][i].xlist) { if (j.defective == defective) { result.push_back(j.p); } } } return result; } void PathIntersectionGraph::fragments(PathVector &in, PathVector &out) const { typedef boost::ptr_vector::const_iterator PIter; for (unsigned w = 0; w < 2; ++w) { for (PIter li = _components[w].begin(); li != _components[w].end(); ++li) { for (CILIter k = li->xlist.begin(); k != li->xlist.end(); ++k) { CILIter n = cyclic_next(k, li->xlist); // TODO: investigate why non-contiguous paths are sometimes generated here Path frag(k->p); frag.setStitching(true); PathInterval ival = forward_interval(k->pos, n->pos, _pv[w][k->pos.path_index].size()); _pv[w][k->pos.path_index].appendPortionTo(frag, ival, k->p, n->p); if (k->next_edge == INSIDE) { in.push_back(frag); } else { out.push_back(frag); } } } } } /** @brief Compute the partial result of a boolean operation by looking at components containing * intersections and stitching the correct path portions between them, depending on the truth * table of the operation. * * @param enter_a – whether the path portions contained inside operand A should be part of the boundary * of the boolean operation's result. * @param enter_b – whether the path portions contained inside operand B should be part of the boundary * of the boolean operation's result. * * These two flags completely determine how to resolve the crossings when building the result * and therefore encode which boolean operation we are performing. For example, the boolean intersection * corresponds to enter_a == true and enter_b == true, as can be seen by looking at a Venn diagram. */ PathVector PathIntersectionGraph::_getResult(bool enter_a, bool enter_b) { PathVector result; if (_xs.empty()) return result; // Create the list of intersections to process _ulist.clear(); for (auto & _component : _components) { for (auto & li : _component) { for (auto & k : li.xlist) { _ulist.push_back(k); } } } unsigned n_processed = 0; while (true) { // get unprocessed intersection if (_ulist.empty()) break; IntersectionVertex &iv = _ulist.front(); unsigned w = iv.which; ILIter i = _components[w][iv.pos.path_index].xlist.iterator_to(iv); result.push_back(Path(i->p)); result.back().setStitching(true); bool reverse = false; ///< Whether to traverse the current component in the backwards direction. while (i->_proc_hook.is_linked()) { ILIter prev = i; std::size_t pi = i->pos.path_index; ///< Index of the path in its PathVector // determine which direction to go // union: always go outside // intersection: always go inside // a minus b: go inside in b, outside in a // b minus a: go inside in a, outside in b if (w == 0) { // The path we're on is a part of A reverse = (i->next_edge == INSIDE) ^ enter_a; } else { // The path we're on is a part of B reverse = (i->next_edge == INSIDE) ^ enter_b; } // get next intersection if (reverse) { i = cyclic_prior(i, _components[w][pi].xlist); } else { i = cyclic_next(i, _components[w][pi].xlist); } // append portion of path to the result PathInterval ival = PathInterval::from_direction( prev->pos.asPathTime(), i->pos.asPathTime(), reverse, _pv[i->which][pi].size()); _pv[i->which][pi].appendPortionTo(result.back(), ival, prev->p, i->p); // count both vertices as processed n_processed += 2; if (prev->_proc_hook.is_linked()) { _ulist.erase(_ulist.iterator_to(*prev)); } if (i->_proc_hook.is_linked()) { _ulist.erase(_ulist.iterator_to(*i)); } // switch to the other path i = _getNeighbor(i); w = i->which; } result.back().close(true); if (reverse){ result.back() = result.back().reversed(); } if (result.back().empty()) { // std::cerr << "Path is empty" << std::endl; throw GEOM_ERR_INTERSECGRAPH; } } if (n_processed != size() * 2) { // std::cerr << "Processed " << n_processed << " intersections, expected " << (size() * 2) << std::endl; throw GEOM_ERR_INTERSECGRAPH; } return result; } /** @brief Select intersection-free path components ahead of a boolean operation based on whether * they should be a part of that operation's result. * * Every component that has intersections will be processed by _getResult(). * Here we take care of paths that don't have any intersections. They are either * completely inside or completely outside the other path-vector. * * @param result – output parameter to store the selected components. * @param which – which of the two operands to search for intersection-free paths. * @param inside – If set to true, add paths entirely contained inside the other path-vector to * the result. If set to false, add paths entirely outside of the other path-vector instead. */ void PathIntersectionGraph::_handleNonintersectingPaths(PathVector &result, unsigned which, bool inside) { unsigned w = which; unsigned ow = (w+1) % 2; for (std::size_t i = 0; i < _pv[w].size(); ++i) { // the path data vector might have been left empty if there were no intersections at all bool has_path_data = !_components[w].empty(); // Skip if the path has intersections if (has_path_data && !_components[w][i].xlist.empty()) continue; bool path_inside = false; // Use the status flag set in the constructor if available. if (has_path_data && _components[w][i].status == INSIDE) { path_inside = true; } else if (has_path_data && _components[w][i].status == OUTSIDE) { path_inside = false; } else { // The status flag is ambiguous: we evaluate the winding number of the initial point. int wdg = _pv[ow].winding(_pv[w][i].initialPoint()); path_inside = wdg % 2 != 0; } if (path_inside == inside) { result.push_back(_pv[w][i]); } } } /** @brief Get an iterator to the corresponding crossing on the other path-vector. * * @param ILIter – an iterator to a list of intersections in one of the path-vectors. * @return An iterator to the corresponding intersection in the other path-vector. */ PathIntersectionGraph::ILIter PathIntersectionGraph::_getNeighbor(ILIter iter) { unsigned ow = (iter->which + 1) % 2; return _components[ow][iter->neighbor->pos.path_index].xlist.iterator_to(*iter->neighbor); } /** Get the path data for the path containing the intersection given an iterator to the intersection */ PathIntersectionGraph::PathData & PathIntersectionGraph::_getPathData(ILIter iter) { return _components[iter->which][iter->pos.path_index]; } /** Format the PathIntersectionGraph for output. */ std::ostream &operator<<(std::ostream &os, PathIntersectionGraph const &pig) { os << "Intersection graph:\n" << pig._xs.size()/2 << " total intersections\n" << pig.size() << " considered intersections\n"; for (std::size_t i = 0; i < pig._components[0].size(); ++i) { PathIntersectionGraph::IntersectionList const &xl = pig._components[0][i].xlist; for (const auto & j : xl) { os << j.pos << " - " << j.neighbor->pos << " @ " << j.p << "\n"; } } return os; } } // namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :