/** * \file * \brief Polynomial in canonical (monomial) basis *//* * Authors: * MenTaLguY * Krzysztof KosiƄski * * Copyright 2007-2015 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include #include <2geom/polynomial.h> #include <2geom/math-utils.h> #include #ifdef HAVE_GSL #include #endif namespace Geom { #ifndef M_PI # define M_PI 3.14159265358979323846 #endif Poly Poly::operator*(const Poly& p) const { Poly result; result.resize(degree() + p.degree()+1); for(unsigned i = 0; i < size(); i++) { for(unsigned j = 0; j < p.size(); j++) { result[i+j] += (*this)[i] * p[j]; } } return result; } /*double Poly::eval(double x) const { return gsl_poly_eval(&coeff[0], size(), x); }*/ void Poly::normalize() { while(back() == 0) pop_back(); } void Poly::monicify() { normalize(); double scale = 1./back(); // unitize for(unsigned i = 0; i < size(); i++) { (*this)[i] *= scale; } } #ifdef HAVE_GSL std::vector > solve(Poly const & pp) { Poly p(pp); p.normalize(); gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (p.size()); gsl_complex_packed_ptr z = new double[p.degree()*2]; double* a = new double[p.size()]; for(unsigned int i = 0; i < p.size(); i++) a[i] = p[i]; std::vector > roots; //roots.resize(p.degree()); gsl_poly_complex_solve (a, p.size(), w, z); delete[]a; gsl_poly_complex_workspace_free (w); for (unsigned int i = 0; i < p.degree(); i++) { roots.emplace_back(z[2*i] ,z[2*i+1]); //printf ("z%d = %+.18f %+.18f\n", i, z[2*i], z[2*i+1]); } delete[] z; return roots; } std::vector solve_reals(Poly const & p) { std::vector > roots = solve(p); std::vector real_roots; for(auto & root : roots) { if(root.imag() == 0) // should be more lenient perhaps real_roots.push_back(root.real()); } return real_roots; } #endif double polish_root(Poly const & p, double guess, double tol) { Poly dp = derivative(p); double fn = p(guess); while(fabs(fn) > tol) { guess -= fn/dp(guess); fn = p(guess); } return guess; } Poly integral(Poly const & p) { Poly result; result.reserve(p.size()+1); result.push_back(0); // arbitrary const for(unsigned i = 0; i < p.size(); i++) { result.push_back(p[i]/(i+1)); } return result; } Poly derivative(Poly const & p) { Poly result; if(p.size() <= 1) return Poly(0); result.reserve(p.size()-1); for(unsigned i = 1; i < p.size(); i++) { result.push_back(i*p[i]); } return result; } Poly compose(Poly const & a, Poly const & b) { Poly result; for(unsigned i = a.size(); i > 0; i--) { result = Poly(a[i-1]) + result * b; } return result; } /* This version is backwards - dividing taylor terms Poly divide(Poly const &a, Poly const &b, Poly &r) { Poly c; r = a; // remainder const unsigned k = a.size(); r.resize(k, 0); c.resize(k, 0); for(unsigned i = 0; i < k; i++) { double ci = r[i]/b[0]; c[i] += ci; Poly bb = ci*b; std::cout << ci <<"*" << b << ", r= " << r << std::endl; r -= bb.shifted(i); } return c; } */ Poly divide(Poly const &a, Poly const &b, Poly &r) { Poly c; r = a; // remainder assert(b.size() > 0); const unsigned k = a.degree(); const unsigned l = b.degree(); c.resize(k, 0.); for(unsigned i = k; i >= l; i--) { //assert(i >= 0); double ci = r.back()/b.back(); c[i-l] += ci; Poly bb = ci*b; //std::cout << ci <<"*(" << b.shifted(i-l) << ") = " // << bb.shifted(i-l) << " r= " << r << std::endl; r -= bb.shifted(i-l); r.pop_back(); } //std::cout << "r= " << r << std::endl; r.normalize(); c.normalize(); return c; } Poly gcd(Poly const &a, Poly const &b, const double /*tol*/) { if(a.size() < b.size()) return gcd(b, a); if(b.size() <= 0) return a; if(b.size() == 1) return a; Poly r; divide(a, b, r); return gcd(b, r); } std::vector solve_quadratic(Coord a, Coord b, Coord c) { std::vector result; if (a == 0) { // linear equation if (b == 0) return result; result.push_back(-c/b); return result; } Coord delta = b*b - 4*a*c; if (delta == 0) { // one root result.push_back(-b / (2*a)); } else if (delta > 0) { // two roots Coord delta_sqrt = sqrt(delta); // Use different formulas depending on sign of b to preserve // numerical stability. See e.g.: // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf int sign = b >= 0 ? 1 : -1; Coord t = -0.5 * (b + sign * delta_sqrt); result.push_back(t / a); result.push_back(c / t); } // no roots otherwise std::sort(result.begin(), result.end()); return result; } std::vector solve_cubic(Coord a, Coord b, Coord c, Coord d) { // based on: // http://mathworld.wolfram.com/CubicFormula.html if (a == 0) { return solve_quadratic(b, c, d); } if (d == 0) { // divide by x std::vector result = solve_quadratic(a, b, c); result.push_back(0); std::sort(result.begin(), result.end()); return result; } std::vector result; // 1. divide everything by a to bring to canonical form b /= a; c /= a; d /= a; // 2. eliminate x^2 term: x^3 + 3Qx - 2R = 0 Coord Q = (3*c - b*b) / 9; Coord R = (-27 * d + b * (9*c - 2*b*b)) / 54; // 3. compute polynomial discriminant Coord D = Q*Q*Q + R*R; Coord term1 = b/3; if (D > 0) { // only one real root Coord S = cbrt(R + sqrt(D)); Coord T = cbrt(R - sqrt(D)); result.push_back(-b/3 + S + T); } else if (D == 0) { // 3 real roots, 2 of which are equal Coord rroot = cbrt(R); result.reserve(3); result.push_back(-term1 + 2*rroot); result.push_back(-term1 - rroot); result.push_back(-term1 - rroot); } else { // 3 distinct real roots assert(Q < 0); Coord theta = acos(R / sqrt(-Q*Q*Q)); Coord rroot = 2 * sqrt(-Q); result.reserve(3); result.push_back(-term1 + rroot * cos(theta / 3)); result.push_back(-term1 + rroot * cos((theta + 2*M_PI) / 3)); result.push_back(-term1 + rroot * cos((theta + 4*M_PI) / 3)); } std::sort(result.begin(), result.end()); return result; } /*Poly divide_out_root(Poly const & p, double x) { assert(1); }*/ } //namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :