import unittest import math from random import randint, uniform import cy2geom from cy2geom import Angle from cy2geom import Point, IntPoint from cy2geom import Line, Ray, Rect from cy2geom import Interval, IntInterval, OptInterval, OptIntInterval from cy2geom import Affine from cy2geom import Translate, Scale, Rotate, VShear, HShear, Zoom from cy2geom import Eigen from cy2geom import Linear from cy2geom import SBasis, SBasisCurve from cy2geom import Bezier, BezierCurve from cy2geom import lerp from cy2geom import LineSegment, QuadraticBezier, CubicBezier from cy2geom import HLineSegment, VLineSegment from cy2geom import EllipticalArc class TestPrimitives(unittest.TestCase): def test_linear(self): L = Linear(0, 1) M = Linear(2) N = Linear() self.assertEqual( (L+M), L+2 ) self.assertEqual( (L-M), L-2 ) self.assertAlmostEqual(L(0.5), lerp(.5, 0, 1)) #~ self.assertTrue(N.is_zero()) self.assertTrue(M.is_constant()) self.assertTrue(L.is_finite()) self.assertAlmostEqual(L(0), L.at0()) self.assertAlmostEqual(L(1), L.at1()) self.assertAlmostEqual(L.value_at(0.3), L(0.3)) self.assertTrue( isinstance(M.to_SBasis(), SBasis )) self.assertAlmostEqual(L.tri(), L(1) - L(0)) self.assertAlmostEqual(L.hat(), (L(1) + L(0))/2) for i in range(11): t = i/10.0 self.assertTrue(L.bounds_exact().Interval.contains(L(t))) self.assertTrue(L.bounds_fast().Interval.contains(L(t))) self.assertTrue(L.bounds_local(t-0.05, t+0.05).Interval.contains(L(t))) self.assertAlmostEqual(lerp(t, 0, 4), t*4) self.assertAlmostEqual(L(t), cy2geom.reverse(L)(1-t)) self.assertAlmostEqual( L(t)*t, (L*t)(t) ) self.assertAlmostEqual( L(t)+t, (L+t)(t) ) self.assertAlmostEqual( L(t)-t, (L-t)(t) ) self.assertAlmostEqual( -( L(t) ), (-L)(t) ) self.assertAlmostEqual( (L/2)(t), L(t)/2 ) def test_sBasis(self): S = SBasis() T = SBasis(2) U = SBasis(1, 7) V = SBasis.from_linear( Linear(2, 8) ) self.assertEqual(V[0], Linear(2, 8)) self.assertEqual(V.back(), Linear(2, 8)) #~ self.assertTrue(S.empty()) self.assertFalse(T.empty()) T.pop_back() self.assertTrue(T.empty()) self.assertEqual(S.size(), 0) self.assertEqual(U.size(), 1) self.assertEqual((U*V).size(), 2) T.resize(1, Linear(2, 3)) self.assertEqual(T[0], Linear(2, 3)) T.clear() self.assertTrue(T.empty()) #TODO #~ T.reserve(5) #~ print T.size() self.assertEqual(V.at(0), V[0]) self.assertEqual(V, U+1) self.assertNotEqual(V, U) self.assertTrue(T.is_zero()) self.assertTrue(SBasis(1).is_constant()) def f(A, B): return (-A)*(A+B*2.2)*(A*B-B*B/3) W = f(U, V) self.assertAlmostEqual(W(0), W.at0()) self.assertAlmostEqual(W(1), W.at1()) for i in range(11): t = i/10.0 self.assertAlmostEqual(W(t), W.value_at(t)) self.assertAlmostEqual(W(t), f(U(t), V(t))) vd_UV = (U*V).value_and_derivatives(t, 1) vd_U = U.value_and_derivatives(t, 1) vd_V = V.value_and_derivatives(t, 1) self.assertAlmostEqual( vd_UV[1], vd_U[1]*V(t)+U(t)*vd_V[1] ) self.assertAlmostEqual( U(V)(t), U(V(t)) ) self.assertEqual(T.degrees_of_freedom(), 0) self.assertEqual(U.degrees_of_freedom(), 2) self.assertEqual(T, T.to_SBasis()) U2 = SBasis(U(0), U(1)) U2.resize(10) self.assertNotEqual(U2, U) U2.truncate(U.size()) self.assertEqual(U2, U) #TODO: normalize() sL = Linear.sin(Linear(0, 1), 3) cL = Linear.cos(Linear(0, 1), 3) sqrtU = SBasis.sqrt( U, 3 ) rL = Linear.reciprocal(Linear(1,2), 3) # cy2geom.inverse seems to return nans for degrees > 1 #~ asin = cy2geom.inverse( cy2geom.sqrt( SBasis(Linear(0, 1)), 3 ), 1) for i in range(11): t = i/10.0 self.assertAlmostEqual(sL(t), math.sin(t)) self.assertAlmostEqual(cL(t), math.cos(t)) #cy2geom.sqrt is not that precise self.assertAlmostEqual(sqrtU(t), math.sqrt(U(t)), places = 1) self.assertAlmostEqual(rL(t), 1/(1+t), places = 1 ) #~ self.assertAlmostEqual( asin(t), math.asin(t) ) self.assertAlmostEqual( SBasis.compose(U, V)(t), U(V)(t) ) self.assertAlmostEqual( SBasis.divide(U, V, 3)(t), U(t)/V(t), places = 1) self.assertAlmostEqual( SBasis.derivative(SBasis.integral(W))(t), W(t)) self.assertAlmostEqual( cy2geom.reverse(W)(t), W(1-t) ) self.assertAlmostEqual( SBasis.multiply(U, V)(t), (U*V)(t)) #TODO looks like bug in 2geom #~ print cy2geom.multiply_add(U, V, W)(t), (U*V+W)(t) self.assertAlmostEqual( SBasis.multiply_add(U, W, V)(t), (U*W+V)(t)) self.assertTrue( SBasis.bounds_exact(U).Interval.contains(U(t)) ) self.assertTrue( SBasis.bounds_fast(U).Interval.contains(U(t)) ) self.assertTrue( SBasis.bounds_local(U, OptInterval(t-0.05, t+0.05)).Interval.contains(U(t)) ) for r in SBasis.roots(W): self.assertAlmostEqual(W(r), 0) for r in SBasis.roots(W, Interval(0, 0.7)): self.assertAlmostEqual(W(r), 0) self.assertTrue(Interval(0, 0.7).contains(r)) levels = [0, 3, 22, -21] for i, roots in enumerate( SBasis.multi_roots(W, levels) ): level = levels[i] for r in roots: self.assertAlmostEqual(W(r), level) self.assertEqual(SBasis.valuation(W), 0) #TODO: why is this still 0? #~ print cy2geom.valuation(cy2geom.shift(W, 6)) self.assertEqual( U[0], SBasis.shift(U, 2)[2] ) for I in SBasis.level_set(W, 2, tol = 1e-7): self.assertAlmostEqual( W(I.mid()), 2 ) for I in SBasis.level_set(W, Interval(0, 1), tol = 1e-7, vtol = 1e-7): self.assertTrue( 0 <= W(I.begin()) <= 1 ) self.assertTrue( 0 <= W(I.mid()) <= 1 ) self.assertTrue( 0 <= W(I.end()) <= 1 ) def test_bezier(self): B = Bezier() C = Bezier(2) D = Bezier(2, 4) E = Bezier(1, 3, 9) F = Bezier(-2, 5, -1, 2) self.assertTrue( B.is_zero() ) self.assertTrue( C.is_constant() ) self.assertTrue( D.is_finite() ) C.clear() self.assertEqual(D.degree(), 1) self.assertEqual(E.at0(), 1) self.assertEqual(E.at1(), 9) self.assertEqual(E[2], 9) for i in range(11): t = i/10.0 self.assertAlmostEqual( D(t), lerp(t, 2, 4) ) self.assertAlmostEqual( D(t), D.value_at(t)) self.assertAlmostEqual( D.value_and_derivatives(t, 0)[0], D(t) ) self.assertAlmostEqual( D.value_and_derivatives(t, 1)[1], Bezier.derivative(D)(t) ) self.assertAlmostEqual( Bezier.integral(D).value_and_derivatives(t, 1)[1], D(t) ) #~ self.assertAlmostEqual( D.elevate_degree().reduce_degree()(t), D(t) ) self.assertAlmostEqual( (D+2)(t), D(t)+2 ) self.assertAlmostEqual( (D-1)(t), D(t)-1 ) self.assertAlmostEqual( (D*2)(t), D(t)*2 ) self.assertAlmostEqual( (D/4)(t), D(t)/4 ) self.assertTrue( Bezier.bounds_fast(F).Interval.contains(F(t)) ) self.assertTrue( Bezier.bounds_exact(F).Interval.contains(F(t)) ) self.assertTrue( Bezier.bounds_local(F, OptInterval(t-0.05, t+0.05)).Interval.contains(F(t)) ) for r in F.roots(): self.assertAlmostEqual(F(r), 0) #TODO: bug in 2geom? #~ for r in F.roots(Interval(0.1, 0.8)): #~ self.assertAlmostEqual(F(r), 0) #~ self.assertTrue( 0.1 <= r <= 0.8 ) self.assertIsInstance(F.forward_difference(1), Bezier) self.assertIsInstance(F.elevate_degree(), Bezier) self.assertIsInstance(E.reduce_degree(), Bezier) #F.reduce_degree() fails with # *** glibc detected *** python2: malloc(): memory corruption: self.assertIsInstance(F.elevate_to_degree(4), Bezier) self.assertIsInstance(F.deflate(), Bezier) S = F.to_SBasis() self.assertIsInstance(S, SBasis) for i in range(11): t = i/10.0 self.assertAlmostEqual(S(t), F(t)) def curve(self, C): self.assertAlmostEqual(C.initial_point(), C(0)) self.assertAlmostEqual(C.final_point(), C.point_at(1)) #Doesn't have to be true #~ if C.length() > 0.01: #~ self.assertFalse(C.is_degenerate()) if C.is_degenerate(): #trivial special case return for i in range(11): t = i/10.0 self.assertAlmostEqual(C(t).x, C.point_at(t).x) self.assertAlmostEqual(C(t).y, C.value_at(t, 1)) self.assertEqual( C(t), C.point_and_derivatives(t, 1)[0] ) self.assertTrue( C.bounds_exact().contains(C(t)) ) self.assertTrue( C.bounds_fast().contains(C(t)) ) #TODO why this works only with degree = 0? if C.bounds_local(OptInterval(t-0.05, t+0.05), 0 ) and ( C.bounds_local(OptInterval(t-0.05, t+0.05), 0).Rect.area() > 1e-10): #ruling out too small rectangles, they have problems with precision self.assertTrue( C.bounds_local( OptInterval(t-0.05, t+0.05), 0 ).Rect.contains(C(t))) D = C.duplicate() D.set_initial(Point()) self.assertAlmostEqual(D.initial_point(), Point()) D.set_final(Point(1, 1)) self.assertAlmostEqual(D.final_point(), Point(1, 1)) A = Affine( uniform(-10, 10), uniform(-10, 10), uniform(-10, 10), uniform(-10, 10), uniform(-10, 10), uniform(-10, 10)) E = C.transformed(A) for i in range(11): t = i/10.0 # self.assertAlmostEqual( E(t), C(t)*A ) G1 = C.portion(0.2, 0.8) G2 = C.portion( interval=Interval(2, 8)/10 ) self.assertAlmostEqual( G1(0), C(0.2) ) self.assertAlmostEqual( G2(0.5), C( lerp(0.5, 0.2, 0.8) )) self.assertAlmostEqual( G1(1), G2(1) ) for i in range(11): t = i/10.0 self.assertAlmostEqual( C.reverse()(t), C(1-t) ) self.assertAlmostEqual( C.point_and_derivatives(0.3, 1)[1], C.derivative()(0.3) ) self.assertAlmostEqual( C.nearest_time(C(0)), 0 ) self.assertAlmostEqual( C( C.nearest_time(C(0.5), interval=Interval(0.2, 0.5)) ), C(0.5) ) self.assertAlmostEqual( C( C.nearest_time(C(0.5), 0.2, 0.5) ), C(0.5) ) for p in C.all_nearest_times( C(0), 0, 1): self.assertEqual(C(p), C(0)) for p in C.all_nearest_times( C(1), interval=Interval(0, 1)): self.assertEqual(C(p), C(1)) for r in C.roots(0, 0): self.assertAlmostEqual(C.value_at(r, 0), 0) self.assertGreaterEqual(C.length(), abs(C(1) - C(0))) self.assertEqual(C.winding(Point()), int(C.winding(Point())) ) self.assertAlmostEqual( C.unit_tangent_at(0.5), Point.unit_vector(C.derivative()(0.5)) ) self.assertTrue(isinstance(C.to_SBasis()[0], SBasis)) def test_sBasisCurve(self): S = SBasisCurve(SBasis(0, 2), SBasis(3, 7)*SBasis(1, 8)) a = SBasis(3, 9)*SBasis(4, 6) b = SBasis(2, 0) c = a(b) self.curve(S) self.curve(S.derivative()) self.curve(S.reverse()) self.curve(S.transformed( Scale(4) )) self.curve(S.transformed( Zoom(9, Translate(3, 6)) )) self.curve(SBasisCurve(a*b*c, a+b+c)) self.curve(S.derivative().derivative()) def test_bezierCurve(self): B = BezierCurve.create( [ Point(0, 5), Point(3, 65), Point(-3, 2), Point(1, 9) ] ) C = BezierCurve.create( [ Point(0,1), Point(1, 0) ] ) self.curve(B) self.curve(C) self.curve(C.reverse()) self.curve(B.portion(0, 2)) self.curve(B.transformed(Zoom(9, Translate(3, 6)))) self.curve(B.derivative()) def ntest_lineSegment(self): L = LineSegment(Point(2, 8), Point(1, 9)) K = LineSegment.from_beziers(Bezier(2, 8), Bezier(-1, 9)) self.curve(L) self.curve(K) self.curve(L.reverse()) self.curve(L.portion(Interval(0.2, 0.4))) self.curve(L.subdivide(0.3)[0]) self.curve(L.subdivide(0.3)[1]) self.curve(L.derivative()) self.curve(L.transformed(Scale(30)*Translate(3, 9))) self.curve(LineSegment()) def test_quadraticBezier(self): Q = QuadraticBezier(Point(2, 8), Point(1, 9), Point(-2, 3)) R = QuadraticBezier.from_beziers(Bezier(2, 8, 4), Bezier(-1, 9, 9)) self.curve(Q) self.curve(R) self.curve(Q.reverse()) self.curve(Q.portion(interval=Interval(0.1, 0.9))) self.curve(Q.subdivide(0.8)[0]) self.curve(Q.subdivide(0.8)[1]) self.curve(Q.derivative()) self.curve(Q.transformed(Scale(-3)*Translate(4, 8))) self.curve(QuadraticBezier()) def test_cubicBezier(self): C = CubicBezier(Point(2, 0), Point(-1, 2.9), Point(-2, 3), Point(3, 1)) D = CubicBezier.from_beziers(Bezier(2, 8, 4, 7), Bezier(-1, 9, 9, 8)) print 343 self.curve(C) self.curve(D) self.curve(C.reverse()) #Some kind of numerical instability imo #~ self.curve(C.portion(Interval(0.1, 0.9))) self.curve(C.subdivide(0.8)[0]) self.curve(C.subdivide(0.8)[1]) self.curve(C.derivative()) self.curve(C.transformed(Scale(-3)*Translate(4, 8))) self.curve(CubicBezier()) def test_hLineSegment(self): H = HLineSegment(Point(3, 9), Point(9, 9)) I = HLineSegment(Point(1, 3), Point(92, 3)) J = HLineSegment.from_point_length( Point(2, 4), 1) self.curve( H ) self.curve( I ) self.curve( J ) self.curve( H.portion(0, .25) ) self.curve( H.derivative() ) self.curve( H.transformed(Rotate(20)) ) self.curve( HLineSegment() ) self.curve( I.reverse() ) map(self.curve, I.subdivide(0.8)) self.assertAlmostEqual(I.get_Y(), 3) J.set_Y(2) J.set_initial_X(0) J.set_final_X(1) self.assertAlmostEqual( J(0), Point(0, 2) ) self.assertAlmostEqual( J(1), Point(1, 2) ) def test_vLineSegment(self): V = VLineSegment(Point(2, 9), Point(2, 6)) W = VLineSegment(Point(1, 2), Point(1, 8)) X = VLineSegment.from_point_length( Point(2, 4), 1) #~ self.curve( V ) #~ self.curve( W ) #~ self.curve( X ) #~ self.curve( V.portion(0, .25) ) #~ self.curve( V.derivative() ) #~ self.curve( V.transformed(Rotate(20)) ) #~ self.curve( VLineSegment() ) #~ self.curve( W.reverse() ) #~ map(self.curve, W.subdivide(0.8)) #~ #~ self.assertAlmostEqual(I.get_Y(), 3) #~ X.set_Y(2) #~ X.set_initialX(0) #~ X.set_finalX(1) #~ self.assertAlmostEqual( X(0), Point(0, 2) ) #~ self.assertAlmostEqual( X(1), Point(1, 2) ) #~ print V(0.5) #~ print V.nearest_time(V(0.5), 0.1, 0.4 ) #~ print V.nearest_time(V(0.5), Interval(0.2, 0.5)) #~ print V(0.5), V(0.2) #TODO: #this is likely a bug in 2geom, following code #~ VLineSegment V(Point(0, 0), 2); #~ printf("%f\n", V.nearest_time(V(0.5), 0.2, 0.5)); #prints #0.2 def test_ellipticalArc(self): E = EllipticalArc() self.curve(E) F = EllipticalArc(Point(), 1, 2, math.pi/6, True, True, Point(1, 1)) self.assertTrue(F.sweep()) self.assertTrue(F.large_arc()) self.assertAlmostEqual(F.chord()(0), Point()) self.assertAlmostEqual(F.chord()(1), Point(1, 1)) F.set_extremes(Point(1, 1), Point(-1, 1)) self.assertAlmostEqual(F.initial_point(), Point(1, 1)) self.assertAlmostEqual(F.final_point(), Point(-1, 1)) self.assertEqual(F.initial_angle(), F.angle_at(0)) self.assertEqual(F.final_angle(), F.angle_at(1)) self.assertTrue(F.contains(F.angle_at(0.5))) G = EllipticalArc(Point(), 1, 1, 0, True, True, Point(2, 0)) for i in range(11): t = i/10.0 print G(t) self.assertAlmostEqual(G.extent(), math.pi) self.assertAlmostEqual(G.extent(), G.sweep_angle()) self.assertAlmostEqual(float(G.angle_at(0.5)), -math.pi/2) self.assertAlmostEqual(Point(1, 1), G.rays()) self.assertAlmostEqual(1, G.ray(1)) self.assertAlmostEqual(0, float(G.rotation_angle())) self.assertAlmostEqual(G.extent(), G.angle_interval().extent()) self.assertAlmostEqual(G.center(), Point(1, 0)) #unit half-circle U = EllipticalArc(Point(1, 0), 1, 1, 0, True, True, Point(-1, 0)) G.set(Point(), 1, 1, 0, True, False, Point(1, 0)) A = G.unit_circle_transform() self.assertAlmostEqual( G(0.5), U.transformed(A)(0.5) ) self.assertAlmostEqual( G.value_at_angle(G.angle_at(0.32), 0), G.value_at(0.32, 0) ) self.assertTrue(G.contains_angle(Angle(math.pi/4))) self.assertFalse(G.is_SVG_compliant()) #~ self.curve(F) #TODO: #F.point_and_derivatives(t, 1)[0] differs from F(0) and F.bounds_exact, #F.bounds_fast doesn't contain F(1) unittest.main()