/* * Bounds Path and PathVector * * Authors: * Marco Cecchetti * * Copyright 2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/d2.h> #include <2geom/sbasis.h> #include <2geom/path.h> #include <2geom/pathvector.h> #include #include using namespace Geom; std::string option_formatter(double x) { if (x == 0.0) return std::string("CURVE"); if (x == 1.0) return std::string("PATH"); if (x == 2.0) return std::string("PATHVECTOR"); return std::string(""); } class BoundsPath : public Toy { enum { CURVE = 0, PATH, PATHVECTOR }; enum { FAST = 0, EXACT = 1 }; private: void draw( cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override { cairo_set_line_width (cr, 0.3); m_selection_kind = (unsigned int) (sliders[0].value()); for (unsigned int i = 0; i < m_pathvector_coll.size(); ++i) { cairo_set_source_rgba(cr, 0.0, 0.4*(i+1), 0.8/(i+1), 1.0); for (unsigned int j = 0; j < m_pathvector_coll[i].size(); ++j) { m_pathvector_coll[i][j].clear(); for (unsigned int k = 0; k < m_curves_per_path; ++k) { PointSetHandle psh; psh.pts.resize(m_handles_per_curve); for (unsigned int h = 0; h < m_handles_per_curve; ++h) { unsigned int kk = k * (m_handles_per_curve-1) + h; psh.pts[h] = m_pathvector_coll_handles[i][j].pts[kk]; } m_pathvector_coll[i][j].append(psh.asBezier()); } cairo_path(cr, m_pathvector_coll[i][j]); } cairo_stroke(cr); } Rect bound; if ( (m_selection_kind == CURVE) && (m_selected_curve != -1) ) { const Curve & curve = m_pathvector_coll[m_selected_pathvector][m_selected_path][m_selected_curve]; bound = toggles[0].on ? curve.boundsExact() : curve.boundsFast(); } else if ( (m_selection_kind == PATH) && (m_selected_path != -1) ) { const Path & path = m_pathvector_coll[m_selected_pathvector][m_selected_path]; bound = toggles[0].on ? *path.boundsExact() : *path.boundsFast(); } else if ( (m_selection_kind == PATHVECTOR) && (m_selected_pathvector != -1) ) { const PathVector & pathvector = m_pathvector_coll[m_selected_pathvector]; bound = toggles[0].on ? *bounds_exact(pathvector) : *bounds_fast(pathvector); } cairo_set_source_rgba(cr, 0.5, 0.0, 0.0, 1.0); cairo_set_line_width (cr, 0.4); cairo_rectangle(cr, bound.left(), bound.top(), bound.width(), bound.height()); cairo_stroke(cr); Toy::draw(cr, notify, width, height, save,timer_stream); } void mouse_pressed(GdkEventButton* e) override { Point pos(e->x, e->y); double d, t; double dist = 1e10; Rect bound; m_selected_pathvector = -1; m_selected_path = -1; m_selected_curve = -1; if (m_selection_kind == CURVE) { for (unsigned int i = 0; i < m_pathvector_coll.size(); ++i) { for (unsigned int j = 0; j < m_pathvector_coll[i].size(); ++j) { for ( unsigned int k = 0; k < m_pathvector_coll[i][j].size(); ++k) { const Curve & curve = m_pathvector_coll[i][j][k]; bound = toggles[0].on ? curve.boundsExact() : curve.boundsFast(); d = distanceSq(pos, bound); if ( are_near(d, 0) ) { t = curve.nearestTime(pos); d = distanceSq(pos, curve.pointAt(t)); if (d < dist) { dist = d; m_selected_pathvector = i; m_selected_path = j; m_selected_curve = k; } } } } } //std::cerr << "m_selected_path = " << m_selected_path << std::endl; //std::cerr << "m_selected_curve = " << m_selected_curve << std::endl; } else if (m_selection_kind == PATH) { for (unsigned int i = 0; i < m_pathvector_coll.size(); ++i) { for (unsigned int j = 0; j < m_pathvector_coll[i].size(); ++j) { const Path & path = m_pathvector_coll[i][j]; bound = toggles[0].on ? *path.boundsExact() : *path.boundsFast(); d = distanceSq(pos, bound); if ( are_near(d, 0) ) { t = path.nearestTime(pos).asFlatTime(); d = distanceSq(pos, path.pointAt(t)); if (d < dist) { dist = d; m_selected_pathvector = i; m_selected_path = j; } } } } } else if (m_selection_kind == PATHVECTOR) { for (unsigned int i = 0; i < m_pathvector_coll.size(); ++i) { const PathVector & pathvector = m_pathvector_coll[i]; bound = toggles[0].on ? *bounds_exact(pathvector) : *bounds_fast(pathvector); d = distanceSq(pos, bound); if ( are_near(d, 0) ) { for (unsigned int j = 0; j < m_pathvector_coll[i].size(); ++j) { const Path & path = m_pathvector_coll[i][j]; t = path.nearestTime(pos).asFlatTime(); d = distanceSq(pos, path.pointAt(t)); if (d < dist) { dist = d; m_selected_pathvector = i; } } } } } Toy::mouse_pressed(e); } public: BoundsPath() { m_total_pathvectors = 2; m_paths_per_vector = 2; m_curves_per_path = 3; m_handles_per_curve = 4; m_selection_kind = CURVE; m_selected_pathvector = -1; m_selected_path = -1; m_selected_curve = -1; m_handles_per_path = m_curves_per_path * (m_handles_per_curve-1) + 1; m_pathvector_coll_handles.resize(m_total_pathvectors); m_pathvector_coll.resize(m_total_pathvectors); for (unsigned int k = 0; k < m_total_pathvectors; ++k) { m_pathvector_coll_handles[k].resize(m_paths_per_vector); m_pathvector_coll[k].resize(m_paths_per_vector); for (unsigned int j = 0; j < m_paths_per_vector; ++j) { m_pathvector_coll_handles[k][j].pts.resize(m_handles_per_path); handles.push_back(&(m_pathvector_coll_handles[k][j])); for (unsigned int i = 0; i < m_handles_per_path; ++i) { m_pathvector_coll_handles[k][j].pts[i] = Point(500*uniform() + 300*k, 300*uniform() + 80 + 200*j); } } } sliders.emplace_back(0, 2, 1, 0, "selection type"); sliders[0].geometry(Point(10, 20), 50, X); sliders[0].formatter(&option_formatter); Rect toggle_bound(Point(300,20), Point(390, 45)); toggles.emplace_back(toggle_bound, "fast/exact", EXACT); handles.push_back(&(sliders[0])); handles.push_back(&(toggles[0])); } private: unsigned int m_total_pathvectors; unsigned int m_paths_per_vector; unsigned int m_curves_per_path; unsigned int m_handles_per_curve; unsigned int m_handles_per_path; std::vector m_pathvector_coll; std::vector< std::vector > m_pathvector_coll_handles; // PathVector m_pathvector; // std::vector m_pathvector_handles; int m_selected_curve; int m_selected_path; int m_selected_pathvector; unsigned int m_selection_kind; std::vector sliders; std::vector toggles; }; int main(int argc, char **argv) { init( argc, argv, new BoundsPath(), 800, 600 ); return 0; } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :