/* * Nearest Points Toy 3 * * Authors: * Nathan Hurst * Marco Cecchetti * * Copyright 2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/d2.h> #include <2geom/sbasis.h> #include <2geom/path.h> #include <2geom/bezier-to-sbasis.h> #include <2geom/sbasis-geometric.h> #include <2geom/piecewise.h> #include <2geom/path-intersection.h> #include #include #include using namespace Geom; class np_finder { public: np_finder(cairo_t* _cr, D2 const& _c1, D2 const& _c2) : cr(_cr), cc1(_c1), cc2(_c2), c1(_c1), c2(_c2) { dc1 = derivative(_c1); dc2 = derivative(_c2); cd1 = dot(_c1,dc1); cd2 = dot(_c2,dc2); dsq = 10e30; Piecewise< D2 > uv1 = unitVector(dc1, EPSILON); Piecewise< D2 > uv2 = unitVector(dc2, EPSILON); dcn1 = dot(Piecewise< D2 >(dc1), uv1); dcn2 = dot(Piecewise< D2 >(dc2), uv2); r_dcn1 = cross(derivative(uv1), uv1); r_dcn2 = cross(derivative(uv2), uv2); k1 = Geom::divide(r_dcn1, dcn1, EPSILON, 3); k2 = Geom::divide(r_dcn2, dcn2, EPSILON, 3); n1 = divide(rot90(uv1), k1, EPSILON, 3); n2 = divide(rot90(uv2), k2, EPSILON, 3); std::vector cuts1, cuts2; // add cuts at points where the curvature is discontinuos for ( unsigned int i = 1; i < k1.size(); ++i ) { if( !are_near(k1[i-1].at1(), k1[i].at0()) ) { cuts1.push_back(k1.cuts[i]); } } for ( unsigned int i = 1; i < k2.size(); ++i ) { if( !are_near(k2[i-1].at1(), k2[i].at0()) ) { cuts2.push_back(k2.cuts[i]); } } c1 = partition(c1, cuts1); c2 = partition(c2, cuts2); // std::cerr << "# k1 discontinuitis" << std::endl; // for( unsigned int i = 0; i < cuts1.size(); ++i ) // { // std::cerr << "[" << i << "]= " << cuts1[i] << std::endl; // } // std::cerr << "# k2 discontinuitis" << std::endl; // for( unsigned int i = 0; i < cuts2.size(); ++i ) // { // std::cerr << "[" << i << "]= " << cuts2[i] << std::endl; // } // add cuts at points were the curvature is zero std::vector k1_roots = roots(k1); std::vector k2_roots = roots(k2); std::sort(k1_roots.begin(), k1_roots.end()); std::sort(k2_roots.begin(), k2_roots.end()); c1 = partition(c1, k1_roots); c2 = partition(c2, k2_roots); // std::cerr << "# k1 zeros" << std::endl; // for( unsigned int i = 0; i < k1_roots.size(); ++i ) // { // std::cerr << "[" << i << "]= " << k1_roots[i] << std::endl; // } // std::cerr << "# k2 zeros" << std::endl; // for( unsigned int i = 0; i < k2_roots.size(); ++i ) // { // std::cerr << "[" << i << "]= " << k2_roots[i] << std::endl; // } cairo_set_line_width(cr, 0.2); // cairo_set_source_rgba(cr, 0.0, 0.5, 0.0, 1.0); // for( unsigned int i = 1; i < c1.size(); ++i ) // { // draw_circ(cr, c1[i].at0() ); // } // for( unsigned int i = 1; i < c2.size(); ++i ) // { // draw_circ(cr, c2[i].at0() ); // } // add cuts at nearest points to the other curve cuts points cuts1.clear(); cuts1.reserve(c1.size()+1); for ( unsigned int i = 0; i < c1.size(); ++i ) { cuts1.push_back( nearest_time(c1[i].at0(), _c2, dc2, cd2) ); } cuts1.push_back( nearest_time(c1[c1.size()-1].at1(), _c2, dc2, cd2) ); // for ( unsigned int i = 0; i < c1.size(); ++i ) // { // cairo_move_to( cr, c1[i].at0() ); // cairo_line_to(cr, c2(cuts1[i]) ); // } // cairo_move_to( cr, c1[c1.size()-1].at1() ); // cairo_line_to(cr, c2(cuts1[c1.size()])); std::sort(cuts1.begin(), cuts1.end()); cuts2.clear(); cuts2.reserve(c2.size()+1); for ( unsigned int i = 0; i < c2.size(); ++i ) { cuts2.push_back( nearest_time(c2[i].at0(), _c1, dc1, cd1) ); } cuts2.push_back( nearest_time(c2[c2.size()-1].at1(), _c1, dc1, cd1) ); // for ( unsigned int i = 0; i < c2.size(); ++i ) // { // cairo_move_to( cr, c2[i].at0() ); // cairo_line_to(cr, c1(cuts2[i]) ); // } // cairo_move_to( cr, c2[c2.size()-1].at1() ); // cairo_line_to(cr, c1(cuts2[c2.size()])); // cairo_stroke(cr); std::sort(cuts2.begin(), cuts2.end()); c1 = partition(c1, cuts2); c2 = partition(c2, cuts1); // copy curve to preserve cuts status Piecewise< D2 > pwc1 = c1; n1 = partition(n1, pwc1.cuts); pwc1 = partition(pwc1, n1.cuts); r_dcn1 = partition(r_dcn1, n1.cuts); Piecewise< D2 > pwc2 = c2; n2 = partition(n2, pwc2.cuts); pwc2 = partition(pwc2, n2.cuts); assert( pwc1.size() == n1.size() ); assert( pwc2.size() == n2.size() ); assert( r_dcn1.size() == n1.size() ); // add cuts at curvature max and min points Piecewise dk1 = derivative(k1); Piecewise dk2 = derivative(k2); std::vector dk1_roots = roots(dk1); std::vector dk2_roots = roots(dk2); std::sort(dk1_roots.begin(), dk1_roots.end()); std::sort(dk2_roots.begin(), dk2_roots.end()); c1 = partition(c1, dk1_roots); c2 = partition(c2, dk2_roots); // std::cerr << "# k1 min/max" << std::endl; // for( unsigned int i = 0; i < dk1_roots.size(); ++i ) // { // std::cerr << "[" << i << "]= " << dk1_roots[i] << std::endl; // } // std::cerr << "# k2 min/max" << std::endl; // for( unsigned int i = 0; i < dk2_roots.size(); ++i ) // { // std::cerr << "[" << i << "]= " << dk2_roots[i] << std::endl; // } // cairo_set_source_rgba(cr, 0.0, 0.0, 0.6, 1.0); // for( unsigned int i = 0; i < dk1_roots.size(); ++i ) // { // draw_handle(cr, c1(dk1_roots[i])); // } // for( unsigned int i = 0; i < dk2_roots.size(); ++i ) // { // draw_handle(cr, c2(dk2_roots[i])); // } // add cuts at nearest points to max and min curvature points // of the other curve cuts1.clear(); cuts1.reserve(dk2_roots.size()); for (double dk2_root : dk2_roots) { cuts1.push_back(nearest_time(_c2(dk2_root), _c1, dc1, cd1)); } // for( unsigned int i = 0; i < dk2_roots.size(); ++i ) // { // cairo_move_to(cr, c2(dk2_roots[i])); // cairo_line_to(cr, c1(cuts1[i])); // } // cairo_stroke(cr); std::sort(cuts1.begin(), cuts1.end()); c1 = partition(c1, cuts1); // swap normal vector direction and fill the skip list skip_list.clear(); skip_list.resize(c1.size(), false); double npt; Point p, nv; unsigned int si; for ( unsigned int i = 0; i < pwc1.size(); ++i ) { p = pwc1[i](0.5); nv = n1[i](0.5); npt = nearest_time(p, _c2, dc2, cd2); if( dot( _c2(npt) - p, nv ) > 0 ) { if ( dot( nv, n2(npt) ) > 0 ) { n1[i] = -n1[i]; r_dcn1[i] = -r_dcn1[i]; } else { si = c1.segN( n1.mapToDomain(0.5, i) ); skip_list[si] = true; } } } for ( unsigned int i = 0; i < pwc2.size(); ++i ) { p = pwc2[i](0.5); nv = n2[i](0.5); npt = nearest_time(p, _c1, dc1, cd1); if( dot( _c1(npt) - p, nv ) > 0 ) { if ( dot( nv, n1(npt) ) > 0 ) { n2[i] = -n2[i]; } } } evl1 = c1 + n1; evl2 = c2 + n2; // cairo_set_source_rgba(cr, 0.3, 0.3, 0.3, 1.0); // for ( unsigned int i = 0; i < c1.size(); ++i ) // { // double t = c1.mapToDomain(0.5, i); // cairo_move_to(cr, c1(t)); // cairo_line_to(cr, c1(t) + 30*unit_vector(n1(t))); // } // // for ( unsigned int i = 0; i < c2.size(); ++i ) // { // double t = c2.mapToDomain(0.5, i); // cairo_move_to(cr, c2(t)); // cairo_line_to(cr, c2(t) + 30*unit_vector(n2(t))); // } // cairo_stroke(cr); std::cerr << "# skip list: "; for( unsigned int i = 0; i < c1.cuts.size(); ++i ) { if ( skip_list[i] ) std::cerr << i << " "; } std::cerr << std::endl; cairo_set_line_width(cr, 0.4); cairo_set_source_rgba(cr, 0.6, 0.0, 0.0, 1.0); for( unsigned int i = 0; i < c1.size(); ++i ) { if ( skip_list[i] ) { cairo_move_to(cr, c1[i].at0()); cairo_line_to(cr, c1[i].at1()); } } cairo_stroke(cr); cairo_set_source_rgba(cr, 0.2, 0.2, 0.2, 1.0); for( unsigned int i = 1; i < c1.size(); ++i ) { draw_circ(cr, c1[i].at0() ); } cairo_stroke(cr); std::cerr << "# c1 cuts: " << std::endl; for( unsigned int i = 0; i < c1.cuts.size(); ++i ) { std::cerr << "c1.cuts[" << i << "]= " << c1.cuts[i] << std::endl; } } void operator() () { nearest_times_impl(); d = sqrt(dsq); } Point firstPoint() const { return p1; } Point secondPoint() const { return p2; } double firstValue() const { return t1; } double secondValue() const { return t2; } double distance() const { return d; } private: void nearest_times_impl() { double t; for ( unsigned int i = 0; i < c1.size(); ++i ) { if ( skip_list[i] ) continue; std::cerr << i << " "; t = c1.mapToDomain(0.5, i); std::pair npc = loc_nearest_times(t, c1.cuts[i], c1.cuts[i+1]); if ( npc.second != -1 && dsq > L2sq(c1(npc.first) - c2(npc.second)) ) { t1 = npc.first; t2 = npc.second; p1 = c1(t1); p2 = c2(t2); dsq = L2sq(p1 - p2); } } } std::pair loc_nearest_times( double t, double from = 0, double to = 1 ) { std::cerr << "[" << from << "," << to << "] t: " << t << std::endl; unsigned int iter = 0, iter1 = 0, iter2 = 0; std::pair np(-1,-1); std::pair npf(from, -1); std::pair npt(to, -1); double ct = t; double pt = -1; double s = nearest_time(c1(t), cc2, dc2, cd2); cairo_set_source_rgba(cr, 1/(t+1), t*t, t, 1.0); cairo_move_to(cr, c1(t)); while( !are_near(ct, pt) && iter < 1000 ) { pt = ct; double angle = angle_between( n1(ct), evl2(s) - evl1(ct) ); assert( !std::isnan(angle) ); angle = (angle > 0) ? angle - M_PI : angle + M_PI; if ( std::fabs(angle) < M_PI/12 ) { ++iter2; // cairo_move_to(cr, c1(ct)); // cairo_line_to(cr, evl1(ct)); // cairo_line_to(cr, evl2(s)); //std::cerr << "s: " << s << std::endl; //std::cerr << "t: " << ct << std::endl; ct = ct + angle / r_dcn1(ct); s = nearest_time(c1(ct), cc2, dc2, cd2); // angle = angle_between( n2(s), evl1(ct) - evl2(s) ); // assert( !std::isnan(angle) ); // angle = (angle > 0) ? angle - M_PI : angle + M_PI; // s = s + angle / (dcn2(s) * k2(s)); } else { ++iter1; ct = nearest_time(c2(s), cc1, dc1, cd1, from, to); s = nearest_time(c1(ct), cc2, dc2, cd2); } iter = iter1 + iter2; //std::cerr << "s: " << s << std::endl; //std::cerr << "t: " << ct << std::endl; //cairo_line_to(cr, c2(s)); //cairo_line_to(cr, c1(ct)); //std::cerr << "d(pt, ct) = " << std::fabs(ct - pt) << std::endl; if ( ct < from ) { std::cerr << "break left" << std::endl; np = npf; break; } if ( ct > to ) { std::cerr << "break right" << std::endl; np =npt; break; } } //std::cerr << "\n \n"; std::cerr << "iterations: " << iter1 << " + " << iter2 << " = "<< iter << std::endl; assert(iter < 3000); //cairo_move_to(cr, c1(ct)); //cairo_line_to(cr, c2(s)); cairo_stroke(cr); np.first = ct; np.second = s; return np; } double nearest_time( Point const& p, D2 const&c, D2 const& dc, SBasis const& cd, double from = 0, double to = 1 ) { D2 sbc = c - p; SBasis dd = cd - dotp(p, dc); std::vector zeros = roots(dd); double closest = from; double distsq = L2sq(sbc(from)); for (double zero : zeros) { if ( distsq > L2sq(sbc(zero)) ) { closest = zero; distsq = L2sq(sbc(closest)); } } if ( distsq > L2sq(sbc(to)) ) closest = to; return closest; } SBasis dotp(Point const& p, D2 const& c) { SBasis d; d.resize(c[X].size()); for ( unsigned int i = 0; i < c[0].size(); ++i ) { for( unsigned int j = 0; j < 2; ++j ) d[i][j] = p[X] * c[X][i][j] + p[Y] * c[Y][i][j]; } return d; } Piecewise< D2 > divide( Piecewise< D2 > const& a, Piecewise const& b, double tol, unsigned int k, double zero=1.e-3) { D2< Piecewise > aa = make_cuts_independent(a); D2< Piecewise > q(Geom::divide(aa[0], b, tol, k, zero), Geom::divide(aa[1], b, tol, k, zero)); return sectionize(q); } struct are_near_ { bool operator() (double x, double y, double eps = Geom::EPSILON ) { return are_near(x, y, eps); } }; private: cairo_t* cr; D2 const& cc1, cc2; Piecewise< D2 > c1, c2; D2 dc1, dc2; SBasis cd1, cd2; Piecewise< D2 > n1, n2, evl1, evl2; Piecewise k1, k2, dcn1, dcn2, r_dcn1, r_dcn2; double t1, t2, d, dsq; Point p1, p2; std::vector skip_list; }; class NearestPoints : public Toy { private: void draw( cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override { cairo_set_line_width (cr, 0.3); D2 A = pshA.asBezier(); cairo_d2_sb(cr, A); D2 B = pshB.asBezier(); cairo_d2_sb(cr, B); cairo_stroke(cr); np_finder np(cr, A, B); Path AP, BP; AP.append(A); BP.append(B); Crossings ip_list = curve_sweep(AP, BP); if( ip_list.empty() ) { np(); cairo_set_line_width (cr, 0.4); cairo_set_source_rgba(cr, 0.7, 0.0, 0.7, 1.0); cairo_move_to(cr, np.firstPoint()); cairo_line_to(cr, np.secondPoint()); cairo_stroke(cr); //std::cerr << "np: (" << np.firstValue() << "," << np.secondValue() << ")" << std::endl; } Toy::draw(cr, notify, width, height, save,timer_stream); } public: NearestPoints(unsigned int _A_bez_ord, unsigned int _B_bez_ord) : A_bez_ord(_A_bez_ord), B_bez_ord(_B_bez_ord) { handles.push_back(&pshA); handles.push_back(&pshB); for ( unsigned int i = 0; i < A_bez_ord; ++i ) pshA.push_back(Geom::Point(uniform()*400, uniform()*400)); for ( unsigned int i = 0; i < B_bez_ord; ++i ) pshB.push_back(Geom::Point(uniform()*400, uniform()*400)); } private: PointSetHandle pshA, pshB; unsigned int A_bez_ord; unsigned int B_bez_ord; }; int main(int argc, char **argv) { unsigned int A_bez_ord=8; unsigned int B_bez_ord=5; if(argc > 2) sscanf(argv[2], "%d", &B_bez_ord); if(argc > 1) sscanf(argv[1], "%d", &A_bez_ord); init( argc, argv, new NearestPoints(A_bez_ord, B_bez_ord)); return 0; } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :