/* * Show off crossings between two D2 curves. * The intersection points are found by using implicitization tecnique. * * Authors: * Marco Cecchetti * * Copyright 2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include #include #include <2geom/d2.h> #include <2geom/sbasis-poly.h> #include <2geom/numeric/linear_system.h> #include <2geom/symbolic/implicit.h> using namespace Geom; /* * helper routines */ void poly_to_mvpoly1(SL::MVPoly1 & p, Geom::Poly const& q) { for (size_t i = 0; i < q.size(); ++i) { p.coefficient(i, q[i]); } p.normalize(); } void mvpoly1_to_poly(Geom::Poly & p, SL::MVPoly1 const& q) { p.resize(q.get_poly().size()); for (size_t i = 0; i < q.get_poly().size(); ++i) { p[i] = q[i]; } } /* * intersection_info * structure utilized to store intersection info * * p - the intersection point * t0 - the parameter t value at which the first curve pass through p * t1 - the parameter t value at which the first curve pass through p */ struct intersection_info { intersection_info() {} intersection_info(Point const& _p, Coord _t0, Coord _t1) : p(_p), t0(_t0), t1(_t1) {} Point p; Coord t0, t1; }; typedef std::vector intersections_info; /* * intersection algorithm */ void intersect(intersections_info& xs, D2 const& A, D2 const& B) { using std::swap; // supposing implicitization the most expensive step // we perform a call to intersect with curve arguments swapped if (A[0].size() > B[0].size()) { intersect(xs, B, A); for (auto & x : xs) swap(x.t0, x.t1); return; } // convert A from symmetric power basis to power basis Geom::Poly A0 = sbasis_to_poly(A[0]); Geom::Poly A1 = sbasis_to_poly(A[1]); // convert to MultiPoly type SL::MVPoly1 Af, Ag; poly_to_mvpoly1(Af, A0); poly_to_mvpoly1(Ag, A1); // compute a basis of the ideal related to the curve A // in vector form Geom::SL::basis_type b; // if we compute the micro-basis the bezout matrix is made up // by one only entry so we can't do the inversion step. if (A0.size() == 3) { make_initial_basis(b, Af, Ag); } else { microbasis(b, Af, Ag); } // we put the basis in of the form of two independent moving line Geom::SL::MVPoly3 p, q; basis_to_poly(p, b[0]); basis_to_poly(q, b[1]); // compute the Bezout matrix and the implicit equation of the curve A Geom::SL::Matrix BZ = make_bezout_matrix(p, q); SL::MVPoly2 ic = determinant_minor(BZ); ic.normalize(); // convert B from symmetric power basis to power basis Geom::Poly B0 = sbasis_to_poly(B[0]); Geom::Poly B1 = sbasis_to_poly(B[1]); // convert to MultiPoly type SL::MVPoly1 Bf, Bg; poly_to_mvpoly1(Bf, B0); poly_to_mvpoly1(Bg, B1); // evaluate the implicit equation of A on B // so we get an s(t) polynomial that give us // the t values for B at which intersection happens SL::MVPoly1 s = ic(Bf, Bg); // convert s(t) to Poly type, in order to use the real_solve function Geom::Poly z; mvpoly1_to_poly(z, s); // compute t values for the curve B at which intersection happens std::vector sol = solve_reals(z); // filter the found solutions wrt the domain interval [0,1] of B // and compute the related point coordinates std::vector pt; pt.reserve(sol.size()); std::vector points; points.reserve(sol.size()); for (double & i : sol) { if (i >= 0 && i <= 1) { pt.push_back(i); points.push_back(B(pt.back())); } } // case: A is parametrized by polynomial of degree 1 // we compute the t values of A at the intersection points // and filter the results wrt the domain interval [0,1] double t; xs.clear(); xs.reserve(pt.size()); if (A0.size() == 2) { for (size_t i = 0; i < points.size(); ++i) { t = (points[i][X] - A0[0]) / A0[1]; if (t >= 0 && t <= 1) { xs.push_back(intersection_info(points[i], t, pt[i])); } } return; } // general case // we compute the value of the parameter t of A at each intersection point // and we filter the final result wrt the domain interval [0,1] // the computation is performed by using the inversion formula for each point // As reference see: // Sederberger - Computer Aided Geometric Design // par 16.5 - Implicitization and Inversion size_t n = BZ.rows(); Geom::NL::Matrix BZN(n, n); Geom::NL::MatrixView BZV(BZN, 0, 0, n-1, n-1); Geom::NL::VectorView cv = BZN.column_view(n-1); Geom::NL::VectorView bv(cv, n-1); Geom::NL::LinearSystem ls(BZV, bv); for (size_t i = 0; i < points.size(); ++i) { // evaluate the first main minor of order n-1 at each intersection point polynomial_matrix_evaluate(BZN, BZ, points[i]); // solve the linear system with the powers of t as unknowns ls.SV_solve(); // the last element contains the t value t = -ls.solution()[n-2]; // filter with respect to the domain of A if (t >= 0 && t <= 1) { xs.push_back(intersection_info(points[i], t, pt[i])); } } } class IntersectImplicit : public Toy { void draw( cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override { cairo_set_line_width (cr, 0.3); cairo_set_source_rgba (cr, 0.8, 0., 0, 1); D2 A = pshA.asBezier(); cairo_d2_sb(cr, A); cairo_stroke(cr); cairo_set_source_rgba (cr, 0.0, 0., 0, 1); D2 B = pshB.asBezier(); cairo_d2_sb(cr, B); cairo_stroke(cr); intersect(xs, A, B); for (auto & x : xs) { draw_handle(cr, x.p); } Toy::draw(cr, notify, width, height, save,timer_stream); } public: IntersectImplicit(unsigned int _A_bez_ord, unsigned int _B_bez_ord) : A_bez_ord(_A_bez_ord), B_bez_ord(_B_bez_ord) { handles.push_back(&pshA); for (unsigned int i = 0; i <= A_bez_ord; ++i) pshA.push_back(Geom::Point(uniform()*400, uniform()*400)); handles.push_back(&pshB); for (unsigned int i = 0; i <= B_bez_ord; ++i) pshB.push_back(Geom::Point(uniform()*400, uniform()*400)); } private: unsigned int A_bez_ord, B_bez_ord; PointSetHandle pshA, pshB; intersections_info xs; }; int main(int argc, char **argv) { unsigned int A_bez_ord = 4; unsigned int B_bez_ord = 6; if(argc > 1) sscanf(argv[1], "%d", &A_bez_ord); if(argc > 2) sscanf(argv[2], "%d", &B_bez_ord); init( argc, argv, new IntersectImplicit(A_bez_ord, B_bez_ord)); return 0; } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :