/* * Ellipse and Elliptical Arc Fitting Example * * Authors: * Marco Cecchetti * * Copyright 2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/numeric/fitting-tool.h> #include <2geom/numeric/fitting-model.h> #include <2geom/ellipse.h> #include <2geom/elliptical-arc.h> #include <2geom/utils.h> #include #include #include #include #include #include using namespace Geom; class LFMEllipseArea : public NL::LinearFittingModelWithFixedTerms { public: LFMEllipseArea(double coeff) : m_coeff(coeff*coeff) { } void feed( NL::VectorView & coeff, double & fixed_term, Point const& p ) const { coeff[0] = p[X] * p[Y]; coeff[1] = p[X]; coeff[2] = p[Y]; coeff[3] = 1; fixed_term = p[X] * p[X] + m_coeff * p[Y] * p[Y]; } size_t size() const { return 4; } void instance(Ellipse & e, NL::ConstVectorView const& coeff) const { // std::cerr << " B = " << coeff[0] // << " C = " << decimal_round(m_coeff,10) // << " D = " << coeff[1] // << " E = " << coeff[2] // << " F = " << coeff[3] // << std::endl; e.setCoefficients(1, coeff[0], m_coeff, coeff[1], coeff[2], coeff[3]); } private: double m_coeff; }; inline Ellipse fitting(std::vector const& points, double coeff) { size_t sz = points.size(); if (sz != 4) { THROW_RANGEERROR("fitting error: too few points passed"); } LFMEllipseArea model(coeff); NL::least_squeares_fitter fitter(model, sz); for (size_t i = 0; i < sz; ++i) { fitter.append(points[i]); } fitter.update(); NL::Vector z(sz, 0.0); Ellipse e; model.instance(e, fitter.result(z)); return e; } inline double area_goal(double coeff, void* params) { typedef std::vector point_set_t; const point_set_t & points = *static_cast(params); Ellipse e; try { e = fitting(points, coeff); } catch(LogicalError exc) { //std::cerr << exc.what() << std::endl; return 1e18; } return e.ray(X) * e.ray(Y); } inline double perimeter_goal(double coeff, void* params) { typedef std::vector point_set_t; const point_set_t & points = *static_cast(params); Ellipse e; try { e = fitting(points, coeff); } catch(LogicalError exc) { //std::cerr << exc.what() << std::endl; return 1e18; } return e.ray(X) + e.ray(Y); } void no_minimum_error_handler (const char * reason, const char * file, int line, int gsl_errno) { if (gsl_errno == GSL_EINVAL) { std::cerr << "gsl: " << file << ":" << line << " ERROR: " << reason << std::endl; } else { gsl_error(reason, file, line, gsl_errno); } } typedef double goal_function_type(double coeff, void* params); double minimizer (std::vector & points, goal_function_type* gf) { int status; int iter = 0, max_iter = 1000; const gsl_min_fminimizer_type *T; gsl_min_fminimizer *s; double m = 1.0; double a = 1e-2, b = 1e2; gsl_function F; F.function = gf; F.params = static_cast(&points); //T = gsl_min_fminimizer_goldensection; T = gsl_min_fminimizer_brent; s = gsl_min_fminimizer_alloc (T); gsl_min_fminimizer_set (s, &F, m, a, b); // printf ("using %s method\n", // gsl_min_fminimizer_name (s)); // // printf ("%5s [%9s, %9s] %9s %10s %9s\n", // "iter", "lower", "upper", "min", // "err", "err(est)"); // // printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", // iter, a, b, // m, m - m_expected, b - a); do { iter++; status = gsl_min_fminimizer_iterate (s); m = gsl_min_fminimizer_x_minimum (s); a = gsl_min_fminimizer_x_lower (s); b = gsl_min_fminimizer_x_upper (s); status = gsl_min_test_interval (a, b, 1e-3, 0.0); // if (status == GSL_SUCCESS) // printf ("Converged:\n"); // // printf ("%5d [%.7f, %.7f] " // "%.7f %+.7f %.7f\n", // iter, a, b, // m, m - m_expected, b - a); } while (status == GSL_CONTINUE && iter < max_iter); gsl_min_fminimizer_free (s); if (status != GSL_SUCCESS) return 0; return m; } class EllipseAreaMinimizer : public Toy { public: void draw( cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override { Point toggle_sp( 300, height - 50); toggles[0].bounds = Rect( toggle_sp, toggle_sp + Point(135,25) ); ConvexHull ch(psh.pts); bool non_convex = false; for(auto & pt : psh.pts) { if (ch.contains(pt)) non_convex = true; } if(non_convex) { Circle circ; std::vector boundary(ch.begin(), ch.end()); circ.fit(boundary); e = Ellipse(circ); } else { goal_function_type* gf = &area_goal; if (!toggles[0].on) gf = &perimeter_goal; double coeff = minimizer(psh.pts, gf); try { e = fitting(psh.pts, coeff); } catch(LogicalError exc) { std::cerr << exc.what() << std::endl; Toy::draw(cr, notify, width, height, save,timer_stream); return; } } cairo_set_source_rgba(cr, 0.3, 0.3, 0.3, 1.0); cairo_set_line_width (cr, 0.3); draw_elliptical_arc_with_cairo( cr, e.center(X), e.center(Y), e.ray(X), e.ray(Y), 0, 2*M_PI, e.rotationAngle() ); if (toggles[0].on) *notify << "Area: " << e.ray(X)*e.ray(Y); else *notify << "Perimeter: " << 2* (e.ray(X) + e.ray(Y)); cairo_stroke(cr); Toy::draw(cr, notify, width, height, save,timer_stream); } void draw_elliptical_arc_with_cairo( cairo_t *cr, double _cx, double _cy, double _rx, double _ry, double _sa, double _ea, double _ra = 0 ) const { double cos_rot_angle = std::cos(_ra); double sin_rot_angle = std::sin(_ra); cairo_matrix_t transform_matrix; cairo_matrix_init( &transform_matrix, _rx * cos_rot_angle, _rx * sin_rot_angle, -_ry * sin_rot_angle, _ry * cos_rot_angle, _cx, _cy ); cairo_save(cr); cairo_transform(cr, &transform_matrix); cairo_arc(cr, 0, 0, 1, _sa, _ea); cairo_restore(cr); } public: EllipseAreaMinimizer() { gsl_set_error_handler(&no_minimum_error_handler); first_time = true; psh.pts.resize(4); psh.pts[0] = Point(450, 250); psh.pts[1] = Point(250, 100); psh.pts[2] = Point(250, 400); psh.pts[3] = Point(400, 320); handles.push_back(&psh); toggles.emplace_back("Area/Perimeter", true); handles.push_back(&(toggles[0])); } public: Ellipse e; bool first_time; PointSetHandle psh; std::vector toggles; }; int main(int argc, char **argv) { init( argc, argv, new EllipseAreaMinimizer(), 600, 600 ); return 0; } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :