/* * make up an elliptical arc knowing 3 points lying on the arc * and the ellipse centre * * Authors: * Marco Cecchetti * * Copyright 2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include #include #include <2geom/elliptical-arc.h> #include <2geom/numeric/linear_system.h> namespace Geom { bool make_elliptical_arc( EllipticalArc & ea, Point const& centre, Point const& initial, Point const& final, Point const& inner ) { Point p[3] = { initial, inner, final }; double x1, x2, x3, x4; double y1, y2, y3, y4; double x1y1, x2y2, x3y1, x1y3; NL::Matrix m(3,3); NL::Vector v(3); NL::LinearSystem ls(m, v); m.set_all(0); v.set_all(0); for (auto & k : p) { // init_x_y x1 = k[X] - centre[X]; x2 = x1 * x1; x3 = x2 * x1; x4 = x3 * x1; y1 = k[Y] - centre[Y]; y2 = y1 * y1; y3 = y2 * y1; y4 = y3 * y1; x1y1 = x1 * y1; x2y2 = x2 * y2; x3y1 = x3 * y1; x1y3 = x1 * y3; // init linear system m(0,0) += x4; m(0,1) += x3y1; m(0,2) += x2y2; m(1,0) += x3y1; m(1,1) += x2y2; m(1,2) += x1y3; m(2,0) += x2y2; m(2,1) += x1y3; m(2,2) += y4; v[0] += x2; v[1] += x1y1; v[2] += y2; } ls.SV_solve(); double A = ls.solution()[0]; double B = ls.solution()[1]; double C = ls.solution()[2]; //evaluate ellipse rotation angle double rot = std::atan2( -B, -(A - C) )/2; std::cerr << "rot = " << rot << std::endl; bool swap_axes = false; if ( are_near(rot, 0) ) rot = 0; if ( are_near(rot, M_PI/2) || rot < 0 ) { swap_axes = true; } // evaluate the length of the ellipse rays double cosrot = std::cos(rot); double sinrot = std::sin(rot); double cos2 = cosrot * cosrot; double sin2 = sinrot * sinrot; double cossin = cosrot * sinrot; double den = A * cos2 + B * cossin + C * sin2; if ( den <= 0 ) { std::cerr << "!(den > 0) error" << std::endl; std::cerr << "evaluating rx" << std::endl; return false; } double rx = std::sqrt(1/den); den = C * cos2 - B * cossin + A * sin2; if ( den <= 0 ) { std::cerr << "!(den > 0) error" << std::endl; std::cerr << "evaluating ry" << std::endl; return false; } double ry = std::sqrt(1/den); // the solution is not unique so we choose always the ellipse // with a rotation angle between 0 and PI/2 if ( swap_axes ) std::swap(rx, ry); if ( are_near(rot, M_PI/2) || are_near(rot, -M_PI/2) || are_near(rx, ry) ) { rot = 0; } else if ( rot < 0 ) { rot += M_PI/2; } std::cerr << "swap axes: " << swap_axes << std::endl; std::cerr << "rx = " << rx << " ry = " << ry << std::endl; std::cerr << "rot = " << deg_from_rad(rot) << std::endl; std::cerr << "centre: " << centre << std::endl; // find out how we should set the large_arc_flag and sweep_flag bool large_arc_flag = true; bool sweep_flag = true; Point sp_cp = initial - centre; Point ep_cp = final - centre; Point ip_cp = inner - centre; double angle1 = angle_between(sp_cp, ep_cp); double angle2 = angle_between(sp_cp, ip_cp); double angle3 = angle_between(ip_cp, ep_cp); if ( angle1 > 0 ) { if ( angle2 > 0 && angle3 > 0 ) { large_arc_flag = false; sweep_flag = true; } else { large_arc_flag = true; sweep_flag = false; } } else { if ( angle2 < 0 && angle3 < 0 ) { large_arc_flag = false; sweep_flag = false; } else { large_arc_flag = true; sweep_flag = true; } } // finally we're going to create the elliptical arc! try { ea.set( initial, rx, ry, rot, large_arc_flag, sweep_flag, final ); } catch( RangeError e ) { std::cerr << e.what() << std::endl; return false; } return true; } } using namespace Geom; class ElliptiArcMaker : public Toy { private: void draw( cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override { cairo_set_line_width (cr, 0.3); cairo_set_source_rgb(cr, 0,0,0.3); draw_text(cr, O.pos, "centre"); draw_text(cr, A.pos, "initial"); draw_text(cr, B.pos, "final"); draw_text(cr, C.pos, "inner"); cairo_stroke(cr); cairo_set_source_rgb(cr, 0.7,0,0); bool status = make_elliptical_arc(ea, O.pos, A.pos, B.pos, C.pos); if (status) { D2 easb = ea.toSBasis(); cairo_d2_sb(cr, easb); } cairo_stroke(cr); Toy::draw(cr, notify, width, height, save,timer_stream); } public: ElliptiArcMaker() : O(443, 441), A(516, 275), B(222, 455), C(190, 234) { handles.push_back(&O); handles.push_back(&A); handles.push_back(&B); handles.push_back(&C); } private: PointHandle O, A, B, C; EllipticalArc ea; }; int main(int argc, char **argv) { init( argc, argv, new ElliptiArcMaker() ); return 0; }