#include #include #include #include #include <2geom/sbasis.h> #include <2geom/sbasis-geometric.h> #include <2geom/bezier-to-sbasis.h> #include <2geom/orphan-code/sbasis-of.h> using namespace Geom; using namespace std; SBasis toSBasis(SBasisOf const &f){ SBasis result(f.size(), Linear()); for (unsigned i=0; i toSBasisOfDouble(SBasis const &f){ SBasisOf result; for (auto i : f){ result.push_back(LinearOf(i[0],i[1])); } return result; } #if 0 template class LinearDim; template class SBasisDim; template class LinearDim : public LinearOf >{ public: LinearDim() : LinearOf >() {}; LinearDim(SBasisDim const &a, SBasisDim const &b ) : LinearOf >(a,b) {}; LinearDim(LinearDim const &a, LinearDim const &b ) : LinearOf >(SBasisDim(a),SBasisDim(b)) {}; }; template<> class LinearDim<1> : public LinearOf{ public: LinearDim() : LinearOf() {}; LinearDim(double const &a, double const &b ) : LinearOf(a,b) {}; }; template class SBasisDim : public SBasisOf >{ public: SBasisDim() : SBasisOf >() {}; SBasisDim(LinearDim const &lin) : SBasisOf >(LinearOf >(lin[0],lin[1])) {}; }; template<> class SBasisDim<1> : public SBasisOf{ /* public: SBasisDim<1>() : SBasisOf() {}; SBasisDim(SBasisOf other) : SBasisOf(other) {}; SBasisDim(LinearOf other) : SBasisOf(other) {}; */ }; SBasis toSBasis(SBasisDim<1> f){ SBasis result(f.size(), Linear()); for (unsigned i=0; i SBasisDim compose(SBasisDim const &f, std::vector > const &g ){ assert( dim_f <= g.size() ); SBasisDim u0 = g[dim_f-1]; SBasisDim u1 = -u0 + 1; SBasisDim s = multiply(u0,u1); SBasisDim r; for(int i = f.size()-1; i >= 0; i--) { if ( dim_f>1 ){ r = s*r + compose(f[i][0],g)*u0 + compose(f[i][1],g)*u1; }else{ r = s*r + f[i][0]*u0 + f[i][1]*u1; } } return r; } #endif template SBasisOf multi_compose(SBasisOf const &f, SBasisOf const &g ){ //assert( f.input_dim() <= g.size() ); SBasisOf u0 = g; SBasisOf u1 = -u0 + LinearOf >(SBasisOf(LinearOf(1,1))); SBasisOf s = multiply(u0,u1); SBasisOf r; for(int i = f.size()-1; i >= 0; i--) { r = s*r + f[i][0]*u0 + f[i][1]*u1; } return r; } SBasisOf compose(SBasisOf > const &f, SBasisOf const &x, SBasisOf const &y){ SBasisOf y0 = -y + LinearOf(1,1); SBasisOf s = multiply(y0,y); SBasisOf r; for(int i = f.size()-1; i >= 0; i--) { r = s*r + compose(f[i][0],x)*y0 + compose(f[i][1],x)*y; } return r; } SBasisOf compose(SBasisOf > const &f, D2 > const &X){ return compose(f, X[0], X[1]); } SBasisOf compose(SBasisOf > const &f, D2 const &X){ return compose(f, toSBasisOfDouble(X[0]), toSBasisOfDouble(X[1])); } /* static SBasis eval_v(SBasisOf const &f, double v){ SBasis result(f.size(), Linear()); for (unsigned i=0; i > const &f, double v){ SBasis result(f.size(), Linear()); for (unsigned i=0; i eval_dim(SBasisOf > const &f, double t, unsigned dim){ if (dim == 1) return f.valueAt(t); SBasisOf result; for (unsigned i=0; i(f[i][0].valueAt(t),f[i][1].valueAt(t))); } return result; } /* static SBasis eval_v(SBasisDim<2> const &f, double v){ SBasis result; for (unsigned i=0; i curve; for (unsigned dim=0; dim<2; dim++){ curve[dim] = x*frame.x[dim] + y*frame.y[dim] + z*frame.z[dim]; curve[dim] += frame.O[dim]; } cairo_d2_sb(cr, curve); } void plot3d(cairo_t *cr, SBasis const &x, SBasis const &y, SBasisOf const &z, Frame frame){ D2 curve; for (unsigned dim=0; dim<2; dim++){ curve[dim] = x*frame.x[dim] + y*frame.y[dim] + toSBasis(z)*frame.z[dim]; curve[dim] += frame.O[dim]; } cairo_d2_sb(cr, curve); } void plot3d(cairo_t *cr, Piecewise const &x, Piecewise const &y, Piecewise const &z, Frame frame){ Piecewise xx = partition(x,y.cuts); Piecewise xxx = partition(xx,z.cuts); Piecewise yyy = partition(y,xxx.cuts); Piecewise zzz = partition(z,xxx.cuts); for (unsigned i=0; i > const &f, Frame frame){ int iMax = 5; for (int i=0; i > integral(SBasisOf > const &f, unsigned var){ //variable of f = 1, variable of f's coefficients = 0. if (var == 1) return integral(f); SBasisOf > result; for(unsigned i = 0; i< f.size(); i++) { result.push_back(LinearOf >( integral(f[i][0]),integral(f[i][1]))); } return result; } Piecewise convole(SBasisOf const &f, Interval dom_f, SBasisOf const &g, Interval dom_g){ if ( dom_f.extent() < dom_g.extent() ) return convole(g, dom_g, f, dom_f); SBasisOf > u,v; u.push_back(LinearOf >(LinearOf(0,1), LinearOf(0,1))); v.push_back(LinearOf >(LinearOf(0,0), LinearOf(1,1))); SBasisOf > v_u = v - u*(dom_f.extent()/dom_g.extent()); v_u += SBasisOf >(SBasisOf(dom_f.min()/dom_g.extent())); SBasisOf > gg = multi_compose(g,(v - u*(dom_f.extent()/dom_g.extent()))); SBasisOf > ff = SBasisOf >(f); SBasisOf > hh = integral(ff*gg,0); Piecewise result; result.cuts.push_back(dom_f.min()+dom_g.min()); //Note: we know dom_f.extent() >= dom_g.extent()!! double rho = dom_f.extent()/dom_g.extent(); SBasisOf a,b,t; SBasis seg; a = SBasisOf(LinearOf(0.,0.)); b = SBasisOf(LinearOf(0.,1/rho)); t = SBasisOf(LinearOf(dom_f.min()/dom_g.extent(),dom_f.min()/dom_g.extent()+1)); seg = toSBasis(compose(hh,b,t)-compose(hh,a,t)); result.push(seg,dom_f.min() + dom_g.max()); if (dom_f.extent() > dom_g.extent()){ a = SBasisOf(LinearOf(0.,1-1/rho)); b = SBasisOf(LinearOf(1/rho,1.)); t = SBasisOf(LinearOf(dom_f.min()/dom_g.extent()+1, dom_f.max()/dom_g.extent() )); seg = toSBasis(compose(hh,b,t)-compose(hh,a,t)); result.push(seg,dom_f.max() + dom_g.min()); } a = SBasisOf(LinearOf(1.-1/rho,1.)); b = SBasisOf(LinearOf(1.,1.)); t = SBasisOf(LinearOf(dom_f.max()/dom_g.extent(), dom_f.max()/dom_g.extent()+1 )); seg = toSBasis(compose(hh,b,t)-compose(hh,a,t)); result.push(seg,dom_f.max() + dom_g.max()); return result; } template SBasisOf subderivative(SBasisOf const& f) { SBasisOf res; for(unsigned i = 0; i < f.size(); i++) { res.push_back(LinearOf(derivative(f[i][0]), derivative(f[i][1]))); } return res; } OptInterval bounds_fast(SBasisOf const &f) { return bounds_fast(toSBasis(f)); } /** * Finds a path which traces the 0 contour of f, traversing from A to B as a single cubic d2. * The algorithm is based on matching direction and curvature at each end point. */ //TODO: handle the case when B is "behind" A for the natural orientation of the level set. //TODO: more generally, there might be up to 4 solutions. Choose the best one! D2 sbofsb_cubic_solve(SBasisOf > const &f, Geom::Point const &A, Geom::Point const &B){ D2result;//(Linear(A[X],B[X]),Linear(A[Y],B[Y])); //g_warning("check 0 = %f = %f!", f.apply(A[X],A[Y]), f.apply(B[X],B[Y])); SBasisOf > f_u = derivative(f); SBasisOf > f_v = subderivative(f); SBasisOf > f_uu = derivative(f_u); SBasisOf > f_uv = derivative(f_v); SBasisOf > f_vv = subderivative(f_v); Geom::Point dfA(f_u.valueAt(A[X]).valueAt(A[Y]),f_v.valueAt(A[X]).valueAt(A[Y])); Geom::Point dfB(f_u.valueAt(B[X]).valueAt(B[Y]),f_v.valueAt(B[X]).valueAt(B[Y])); Geom::Point V0 = rot90(dfA); Geom::Point V1 = rot90(dfB); double D2fVV0 = f_uu.valueAt(A[X]).valueAt(A[Y])*V0[X]*V0[X]+ 2*f_uv.valueAt(A[X]).valueAt(A[Y])*V0[X]*V0[Y]+ f_vv.valueAt(A[X]).valueAt(A[Y])*V0[Y]*V0[Y]; double D2fVV1 = f_uu.valueAt(B[X]).valueAt(B[Y])*V1[X]*V1[X]+ 2*f_uv.valueAt(B[X]).valueAt(B[Y])*V1[X]*V1[Y]+ f_vv.valueAt(B[X]).valueAt(B[Y])*V1[Y]*V1[Y]; std::vector > candidates = cubics_fitting_curvature(A,B,V0,V1,D2fVV0,D2fVV1); if (candidates.size()==0) { return D2(SBasis(A[X],B[X]),SBasis(A[Y],B[Y])); } //TODO: I'm sure std algorithm could do that for me... double error = -1; unsigned best = 0; for (unsigned i=0; ifabs(bounds.min()) ? fabs(bounds.max()) : fabs(bounds.min()) ); if ( new_error < error || error < 0 ){ error = new_error; best = i; } } return candidates[best]; } class SBasis0fSBasisToy: public Toy { PointSetHandle hand; PointSetHandle cut_hand; void draw(cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override { double slider_top = width/4.; double slider_bot = width*3./4.; double slider_margin = width/8.; if(hand.pts.empty()) { hand.pts.emplace_back(width*3./16., 3*width/4.); hand.pts.push_back(hand.pts[0] + Geom::Point(width/2., 0)); hand.pts.push_back(hand.pts[0] + Geom::Point(width/8., -width/12.)); hand.pts.push_back(hand.pts[0] + Geom::Point(0,-width/4.)); hand.pts.emplace_back(slider_margin,slider_bot); hand.pts.emplace_back(width-slider_margin,slider_top); } hand.pts[4][X] = slider_margin; if (hand.pts[4][Y]slider_bot) hand.pts[4][Y] = slider_bot; hand.pts[5][X] = width-slider_margin; if (hand.pts[5][Y]slider_bot) hand.pts[5][Y] = slider_bot; //double tA = (slider_bot-hand.pts[4][Y])/(slider_bot-slider_top); //double tB = (slider_bot-hand.pts[5][Y])/(slider_bot-slider_top); cairo_move_to(cr,Geom::Point(slider_margin,slider_bot)); cairo_line_to(cr,Geom::Point(slider_margin,slider_top)); cairo_move_to(cr,Geom::Point(width-slider_margin,slider_bot)); cairo_line_to(cr,Geom::Point(width-slider_margin,slider_top)); cairo_set_line_width(cr,.5); cairo_set_source_rgba (cr, 0., 0.3, 0., 1.); cairo_stroke(cr); Frame frame; frame.O = hand.pts[0];// frame.x = hand.pts[1]-hand.pts[0];// frame.y = hand.pts[2]-hand.pts[0];// frame.z = hand.pts[3]-hand.pts[0];// plot3d(cr,Linear(0,1),Linear(0,0),Linear(0,0),frame); plot3d(cr,Linear(0,1),Linear(1,1),Linear(0,0),frame); plot3d(cr,Linear(0,0),Linear(0,1),Linear(0,0),frame); plot3d(cr,Linear(1,1),Linear(0,1),Linear(0,0),frame); cairo_set_line_width(cr,.2); cairo_set_source_rgba (cr, 0., 0., 0., 1.); cairo_stroke(cr); SBasisOf > f,u,v; u.push_back(LinearOf >(LinearOf(-1,-1),LinearOf(1,1))); v.push_back(LinearOf >(LinearOf(-1,1),LinearOf(-1,1))); #if 1 f = u*u + v*v - LinearOf >(LinearOf(1,1),LinearOf(1,1)); //*notify << "input dim = " << f.input_dim() <<"\n"; plot3d(cr,f,frame); cairo_set_line_width(cr,1); cairo_set_source_rgba (cr, .5, 0.5, 0.5, 1.); cairo_stroke(cr); LineSegment ls(frame.unproject(cut_hand.pts[0]), frame.unproject(cut_hand.pts[1])); SBasis cutting = toSBasis(compose(f, ls.toSBasis())); //cairo_sb(cr, cutting); //cairo_stroke(cr); plot3d(cr, ls.toSBasis()[0], ls.toSBasis()[1], SBasis(0.0), frame); vector rts = roots(cutting); if(rts.size() >= 2) { Geom::Point A = ls.pointAt(rts[0]); Geom::Point B = ls.pointAt(rts[1]); //Geom::Point A(1,0.5); //Geom::Point B(0.5,1); D2 zeroset = sbofsb_cubic_solve(f,A,B); plot3d(cr, zeroset[X], zeroset[Y], SBasis(Linear(0.)),frame); cairo_set_line_width(cr,1); cairo_set_source_rgba (cr, 0.9, 0., 0., 1.); cairo_stroke(cr); } #else SBasisOf > g = u - v ; g += LinearOf >(SBasisOf(LinearOf(.5,.5))); SBasisOf h; h.push_back(LinearOf(0,0)); h.push_back(LinearOf(0,0)); h.push_back(LinearOf(1,1)); f = multi_compose(h,g); plot3d(cr,f,frame); cairo_set_line_width(cr,1); cairo_set_source_rgba (cr, .75, 0.25, 0.25, 1.); cairo_stroke(cr); /* SBasisDim<1> g = SBasisOf(LinearOf(0,1)); g.push_back(LinearOf(-1,-1)); std::vector > vars; vars.push_back(ff); plot3d(cr,compose(g,vars),frame); cairo_set_source_rgba (cr, .5, 0.9, 0.5, 1.); cairo_stroke(cr); */ #endif Toy::draw(cr, notify, width, height, save,timer_stream); } public: SBasis0fSBasisToy(){ handles.push_back(&hand); handles.push_back(&cut_hand); cut_hand.push_back(100,100); cut_hand.push_back(500,500); } }; int main(int argc, char **argv) { init(argc, argv, new SBasis0fSBasisToy); return 0; } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype = cpp:expandtab:shiftwidth = 4:tabstop = 8:softtabstop = 4:encoding = utf-8:textwidth = 99 :