/* * Diffeomorphism-based intersector: given two curves * M(t)=(x(t),y(t)) and N(u)=(X(u),Y(u)) * and supposing M is a graph over the x-axis, we compute y(x) and solve * Y(u) - y(X(u)) = 0 * to get the intersections of the two curves... * * Notice the result can be far from intuitive because of the choice we have * to make to consider a curve as a graph over x or y. For instance the two * branches of xy=eps are never close from this point of view (!)... * * Authors: * J.-F. Barraud * Copyright 2010 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/d2.h> #include <2geom/sbasis.h> #include <2geom/path.h> #include <2geom/bezier-to-sbasis.h> #include <2geom/sbasis-geometric.h> #include #include #include #include #include #include #include #include <2geom/orphan-code/intersection-by-smashing.h> #include "../2geom/orphan-code/intersection-by-smashing.cpp" using namespace Geom; #define VERBOSE 0 static double exp_rescale(double x){ return ::pow(10, x);} std::string exp_formatter(double x){ return default_formatter(exp_rescale(x));} #if 0 //useless here; Piecewise > linearizeCusps( D2 f, double tol){ D2 df = derivative( f ); std::vector xdoms = level_set( df[X], 0., tol); std::vector ydoms = level_set( df[Y], 0., tol); std::vector doms; //TODO: use order!! for ( unsigned i=0; i > result; if (doms.size() == 0 ) return Piecewise >(f); if (doms[0].min() > 0 ){ result.cuts.push_back( 0 ); result.cuts.push_back( doms[0].min() ); result.segs.push_back( portion( f, Interval( 0, doms[0].min() ) ) ); } for ( unsigned i=0; i( Linear( a[X], b[X] ), Linear( a[Y], b[Y] ) ) ); result.cuts.push_back( doms[i].max() ); result.segs.push_back( D2( Linear( b[X], c[X] ), Linear( b[Y], c[Y] ) ) ); double t = ( i+1 == doms.size() )? 1 : doms[i+1].min(); result.cuts.push_back( t ); result.segs.push_back( portion( f, Interval( doms[i].max(), t ) ) ); } return result; } #endif #if 0 /* Computes the intersection of two sets given as (ordered) union intervals. */ std::vector intersect( std::vector const &a, std::vector const &b){ std::vector result; //TODO: use order! for (unsigned i=0; i < a.size(); i++){ for (unsigned j=0; j < b.size(); j++){ OptInterval c( a[i] ); c &= b[j]; if ( c ) { result.push_back( *c ); } } } return result; } /* Computes the top and bottom boundaries of the L_\infty neighborhood * of a curve. The curve is supposed to be a graph over the x-axis. */ void computeLinfinityNeighborhood( D2 const &f, double tol, D2 > &topside, D2 > &botside ){ double signx = ( f[X].at0() > f[X].at1() )? -1 : 1; double signy = ( f[Y].at0() > f[Y].at1() )? -1 : 1; Piecewise > top, bot; top = Piecewise > (f); top.cuts.insert( top.cuts.end(), 2); top.segs.insert( top.segs.end(), D2(Linear( f[X].at1(), f[X].at1()+2*tol*signx), Linear( f[Y].at1() )) ); bot = Piecewise >(f); bot.cuts.insert( bot.cuts.begin(), - 1 ); bot.segs.insert( bot.segs.begin(), D2(Linear( f[X].at0()-2*tol*signx, f[X].at0()), Linear( f[Y].at0() )) ); top += Point(-tol*signx, tol); bot += Point( tol*signx, -tol); if ( signy < 0 ){ swap( top, bot ); top += Point( 0, 2*tol); bot += Point( 0, -2*tol); } topside = make_cuts_independent(top); botside = make_cuts_independent(bot); } /*Compute top and bottom boundaries of the L^infty nbhd of the graph of a *monotonic* function f. * if f is increasing, it is given by [f(t-tol)-tol, f(t+tol)+tol]. * if not, it is [f(t+tol)-tol, f(t-tol)+tol]. */ void computeLinfinityNeighborhood( Piecewise const &f, double tol, Piecewise &top, Piecewise &bot){ top = f + tol; top.offsetDomain( - tol ); top.cuts.insert( top.cuts.end(), f.domain().max() + tol); top.segs.insert( top.segs.end(), SBasis(Linear( f.lastValue() + tol )) ); bot = f - tol; bot.offsetDomain( tol ); bot.cuts.insert( bot.cuts.begin(), f.domain().min() - tol); bot.segs.insert( bot.segs.begin(), SBasis(Linear( f.firstValue() - tol )) ); if ( f.firstValue() > f.lastValue() ){ swap( top, bot ); top += 2*tol; bot -= 2*tol; } } std::vector level_set( D2 const &f, Rect region){ std::vector x_in_reg = level_set( f[X], region[X] ); std::vector y_in_reg = level_set( f[Y], region[Y] ); std::vector result = intersect ( x_in_reg, y_in_reg ); return result; } void prolongateByConstants( Piecewise &f, double paddle_width ){ if ( f.size() == 0 ) return; //do we have a covention about the domain of empty pwsb? f.cuts.insert( f.cuts.begin(), f.cuts.front() - paddle_width ); f.segs.insert( f.segs.begin(), SBasis( f.segs.front().at0() ) ); f.cuts.insert( f.cuts.end(), f.cuts.back() + paddle_width ); f.segs.insert( f.segs.end(), SBasis( f.segs.back().at1() ) ); } /* Returns the intervals over which the curve keeps its slope * in one of the 8 sectors delimited by x=0, y=0, y=x, y=-x. * WARNING: both curves are supposed to be a graphs over x or y axis, * and the smaller the slopes the better (typically <=45°). */ std::vector > smash_intersect( D2 const &a, D2 const &b, double tol, cairo_t *cr , bool draw_more_stuff=false ){ std::vector > res; // a and b or X and Y may have to be exchanged, so make local copies. D2 aa = a; D2 bb = b; bool swapresult = false; bool swapcoord = false;//debug only! if ( draw_more_stuff ){ cairo_set_line_width (cr, 3); cairo_set_source_rgba(cr, .5, .9, .7, 1 ); cairo_d2_sb(cr, aa); cairo_d2_sb(cr, bb); cairo_stroke(cr); } #if 1 //if the (enlarged) bounding boxes don't intersect, stop. if ( !draw_more_stuff ){ OptRect abounds = bounds_fast( a ); OptRect bbounds = bounds_fast( b ); if ( !abounds || !bbounds ) return res; abounds->expandBy(tol); if ( !(abounds->intersects(*bbounds))){ return res; } } #endif //Choose the best curve to be re-parametrized by x or y values. OptRect dabounds = bounds_exact(derivative(a)); OptRect dbbounds = bounds_exact(derivative(b)); if ( dbbounds->min().length() > dabounds->min().length() ){ aa=b; bb=a; swap( dabounds, dbbounds ); swapresult = true; } //Choose the best coordinate to use as new parameter double dxmin = std::min( abs((*dabounds)[X].max()), abs((*dabounds)[X].min()) ); double dymin = std::min( abs((*dabounds)[Y].max()), abs((*dabounds)[Y].min()) ); if ( (*dabounds)[X].max()*(*dabounds)[X].min() < 0 ) dxmin=0; if ( (*dabounds)[Y].max()*(*dabounds)[Y].min() < 0 ) dymin=0; assert (dxmin>=0 && dymin>=0); if (dxmin < dymin) { aa = D2( aa[Y], aa[X] ); bb = D2( bb[Y], bb[X] ); swapcoord = true; } //re-parametrize aa by the value of x. Interval x_range_strict( aa[X].at0(), aa[X].at1() ); Piecewise y_of_x = pw_compose_inverse(aa[Y],aa[X], 2, 1e-5); //Compute top and bottom boundaries of the L^infty nbhd of aa. Piecewise top_ay, bot_ay; computeLinfinityNeighborhood( y_of_x, tol, top_ay, bot_ay); Interval ax_range = top_ay.domain();//i.e. aa[X] domain ewpanded by tol. if ( draw_more_stuff ){ Piecewise dbg_x( SBasis( Linear( top_ay.domain().min(), top_ay.domain().max() ) ) ); dbg_x.setDomain( top_ay.domain() ); D2 > dbg_side ( Piecewise( SBasis( Linear( 0 ) ) ), Piecewise( SBasis( Linear( 0, 2*tol) ) ) ); D2 > dbg_rgn; unsigned h = ( swapcoord ) ? Y : X; dbg_rgn[h].concat ( dbg_x ); dbg_rgn[h].concat ( dbg_side[X] + dbg_x.lastValue() ); dbg_rgn[h].concat ( reverse(dbg_x) ); dbg_rgn[h].concat ( dbg_side[X] + dbg_x.firstValue() ); dbg_rgn[1-h].concat ( bot_ay ); dbg_rgn[1-h].concat ( dbg_side[Y] + bot_ay.lastValue() ); dbg_rgn[1-h].concat ( reverse(top_ay) ); dbg_rgn[1-h].concat ( reverse( dbg_side[Y] ) + bot_ay.firstValue() ); cairo_set_line_width (cr, 1.); cairo_set_source_rgba(cr, 0., 1., 0., .75 ); cairo_d2_pw_sb(cr, dbg_rgn ); cairo_stroke(cr); D2 bbb = bb; if ( swapcoord ) swap( bbb[X], bbb[Y] ); //Piecewise > dbg_rgnB = neighborhood( bbb, tol ); D2 > dbg_topB, dbg_botB; computeLinfinityNeighborhood( bbb, tol, dbg_topB, dbg_botB ); cairo_set_line_width (cr, 1.); cairo_set_source_rgba(cr, .2, 8., .2, .4 ); // cairo_pw_d2_sb(cr, dbg_rgnB ); cairo_d2_pw_sb(cr, dbg_topB ); cairo_d2_pw_sb(cr, dbg_botB ); cairo_stroke(cr); } std::vector bx_in_ax_range = level_set(bb[X], ax_range ); // find times when bb is in the neighborhood of aa. std::vector tbs; for (unsigned i=0; i > bb_in; bb_in[X] = Piecewise ( portion( bb[X], bx_in_ax_range[i] ) ); bb_in[Y] = Piecewise ( portion( bb[Y], bx_in_ax_range[i]) ); bb_in[X].setDomain( bx_in_ax_range[i] ); bb_in[Y].setDomain( bx_in_ax_range[i] ); Piecewise h; Interval level; h = bb_in[Y] - compose( top_ay, bb_in[X] ); level = Interval( -infinity(), 0 ); std::vector rts_lo = level_set( h, level); h = bb_in[Y] - compose( bot_ay, bb_in[X] ); level = Interval( 0, infinity()); std::vector rts_hi = level_set( h, level); std::vector rts = intersect( rts_lo, rts_hi ); tbs.insert(tbs.end(), rts.begin(), rts.end() ); } std::vector > result(tbs.size(),std::pair()); /* for each solution I, find times when aa is in the neighborhood of bb(I). * (Note: the preimage of bb[X](I) by aa[X], enlarged by tol, is a good approximation of this: * it would give points in the 2*tol neighborhood of bb (if the slope of aa is never more than 1). * + faster computation. * - implies little jumps depending on the subdivision of the input curve into monotonic pieces * and on the choice of preferred axis. If noticeable, these jumps would feel random to the user :-( */ for (unsigned j=0; j tas; Piecewise fat_y_of_x = y_of_x; prolongateByConstants( fat_y_of_x, 100*(1+tol) ); D2 > top_b, bot_b; D2 bbj = portion( bb, tbs[j] ); computeLinfinityNeighborhood( bbj, tol, top_b, bot_b ); Piecewise h; Interval level; h = top_b[Y] - compose( fat_y_of_x, top_b[X] ); level = Interval( +infinity(), 0 ); std::vector rts_top = level_set( h, level); for (unsigned idx=0; idx < rts_top.size(); idx++){ rts_top[idx] = Interval( top_b[X].valueAt( rts_top[idx].min() ), top_b[X].valueAt( rts_top[idx].max() ) ); } assert( rts_top.size() == 1 ); h = bot_b[Y] - compose( fat_y_of_x, bot_b[X] ); level = Interval( 0, -infinity()); std::vector rts_bot = level_set( h, level); for (unsigned idx=0; idx < rts_bot.size(); idx++){ rts_bot[idx] = Interval( bot_b[X].valueAt( rts_bot[idx].min() ), bot_b[X].valueAt( rts_bot[idx].max() ) ); } assert( rts_bot.size() == 1 ); #if VERBOSE printf("range(aa[X]) = [%f, %f];\n", y_of_x.domain().min(), y_of_x.domain().max()); printf("range(bbj[X]) = [%f, %f]; tol= %f\n", bbj[X].at0(), bbj[X].at1(), tol); printf("rts_top = "); for (unsigned dbgi=0; dbgi= x_range_strict.max() ){ tas.push_back( Interval ( ( aa[X].at0() < aa[X].at1() ) ? 1 : 0 ) ); }else{ tas = level_set(aa[X], x_dom ); } #if VERBOSE if ( tas.size() != 1 ){ printf("Error: preimage of [%f, %f] by x:[0,1]->[%f, %f] is ", x_dom.min(), x_dom.max(), x_range_strict.min(), x_range_strict.max()); if ( tas.size() == 0 ){ printf( "empty.\n"); }else{ printf("\n [%f,%f]", tas[0].min(), tas[0].max() ); for (unsigned toto=1; toto A = handles_to_sbasis(psh.pts.begin(), A_bez_ord-1); D2 B = handles_to_sbasis(psh.pts.begin()+A_bez_ord, B_bez_ord-1); cairo_set_line_width (cr, .8); cairo_set_source_rgba(cr,0.,0.,0.,.6); cairo_d2_sb(cr, A); cairo_d2_sb(cr, B); cairo_stroke(cr); Rect tolbytol( anchor.pos, anchor.pos ); tolbytol.expandBy( tol ); cairo_rectangle(cr, tolbytol); cairo_stroke(cr); /* Piecewise > smthA = linearizeCusps(A+Point(0,10), tol); cairo_set_line_width (cr, 1.); cairo_set_source_rgba(cr, 1., 0., 1., 1. ); cairo_pw_d2_sb(cr, smthA); cairo_stroke(cr); */ std::vector Acuts = monotonicSplit(A); std::vector Bcuts = monotonicSplit(B); #if 0 for (unsigned i=0; i Ai = portion( A, Acuts[i]); cairo_set_line_width (cr, .2); cairo_set_source_rgba(cr, 0., 0., 0., 1. ); draw_cross(cr, Ai.at0()); cairo_stroke(cr); for (unsigned j=0; j > my_intersections; D2 Bj = portion( B, Bcuts[j]); cairo_set_line_width (cr, .2); cairo_set_source_rgba(cr, 0., 0., 0., 1. ); draw_cross(cr, Bj.at0()); cairo_stroke(cr); } } #endif std::vector my_intersections; my_intersections = smash_intersect( A, B, tol ); for (auto & my_intersection : my_intersections){ cairo_set_line_width (cr, 2.5); cairo_set_source_rgba(cr, 1., 0., 0., .8 ); cairo_d2_sb(cr, portion( A, my_intersection.times[X])); cairo_stroke(cr); cairo_set_line_width (cr, 2.5); cairo_set_source_rgba(cr, 0., 0., 1., .8 ); cairo_d2_sb(cr, portion( B, my_intersection.times[Y])); cairo_stroke(cr); } #if 0 unsigned apiece( slidera.value()/100. * Acuts.size() ); unsigned bpiece( sliderb.value()/100. * Bcuts.size() ); for (unsigned i=0; i Ai = portion( A, Acuts[i]); for (unsigned j=0; j my_intersections; D2 Bj = portion( B, Bcuts[j]); bool draw_more = toggle.on && i == apiece && j == bpiece; // my_intersections = smash_intersect( Ai, Bj, tol, cr, draw_more ); my_intersections = monotonic_smash_intersect( Ai, Bj, tol ); for (unsigned k=0; k 2) sscanf(argv[2], "%d", &B_bez_ord); if(argc > 1) sscanf(argv[1], "%d", &A_bez_ord); init( argc, argv, new Intersector(A_bez_ord, B_bez_ord)); return 0; } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :