#include #include #include #include #include #include <2geom/bezier.h> #include <2geom/path.h> #include <2geom/pathvector.h> #include <2geom/path-intersection.h> #include <2geom/svg-path-parser.h> #include <2geom/svg-path-writer.h> #include "testing.h" using namespace std; using namespace Geom; Path string_to_path(const char* s) { PathVector pv = parse_svg_path(s); assert(pv.size() == 1); return pv[0]; } // Path fixture class PathTest : public ::testing::Test { protected: PathTest() { line.append(LineSegment(Point(0,0), Point(1,0))); square = string_to_path("M 0,0 1,0 1,1 0,1 z"); circle = string_to_path("M 0,0 a 4.5,4.5 0 1 1 -9,0 4.5,4.5 0 1 1 9,0 z"); arcs = string_to_path("M 0,0 a 5,10 45 0 1 10,10 a 5,10 45 0 1 0,0 z"); diederik = string_to_path("m 262.6037,35.824151 c 0,0 -92.64892,-187.405851 30,-149.999981 104.06976,31.739531 170,109.9999815 170,109.9999815 l -10,-59.9999905 c 0,0 40,79.99999 -40,79.99999 -80,0 -70,-129.999981 -70,-129.999981 l 50,0 C 435.13571,-131.5667 652.76275,126.44872 505.74322,108.05672 358.73876,89.666591 292.6037,-14.175849 292.6037,15.824151 c 0,30 -30,20 -30,20 z"); cmds = string_to_path("M 0,0 V 100 H 100 Q 100,0 0,0 L 200,0 C 200,100 300,100 300,0 S 200,-100 200,0"); p_open = string_to_path("M 0,0 L 0,5 5,5 5,0"); p_closed = p_open; p_closed.close(true); p_add = string_to_path("M -1,6 L 6,6"); p_open.setStitching(true); p_closed.setStitching(true); } // Objects declared here can be used by all tests in the test case for Foo. Path line, square, circle, arcs, diederik, cmds; Path p_open, p_closed, p_add; }; TEST_F(PathTest, CopyConstruction) { Path pa = p_closed; Path pc(p_closed); EXPECT_EQ(pa, p_closed); EXPECT_EQ(pa.closed(), p_closed.closed()); EXPECT_EQ(pc, p_closed); EXPECT_EQ(pc.closed(), p_closed.closed()); Path poa = cmds; Path poc(cmds); EXPECT_EQ(poa, cmds); EXPECT_EQ(poa.closed(), cmds.closed()); EXPECT_EQ(poc, cmds); EXPECT_EQ(poc.closed(), cmds.closed()); PathVector pvc(pa); EXPECT_EQ(pvc[0], pa); PathVector pva((Geom::Path())); pva[0] = pa; EXPECT_EQ(pva[0], pa); } TEST_F(PathTest, PathInterval) { PathTime n2_before(1, 0.9995), n2_after(2, 0.0005), n3_before(2, 0.9995), n3_after(3, 0.0005), mid2(2, 0.5), mid3(3, 0.5); // ival[x][0] - normal // ival[x][1] - reversed // ival[x][2] - crosses start // ival[x][3] - reversed, crosses start PathInterval ival[5][4]; ival[0][0] = PathInterval(n2_before, n2_after, false, 4); ival[0][1] = PathInterval(n2_after, n2_before, false, 4); ival[0][2] = PathInterval(n2_before, n2_after, true, 4); ival[0][3] = PathInterval(n2_after, n2_before, true, 4); ival[1][0] = PathInterval(n2_before, n3_after, false, 4); ival[1][1] = PathInterval(n3_after, n2_before, false, 4); ival[1][2] = PathInterval(n2_before, n3_after, true, 4); ival[1][3] = PathInterval(n3_after, n2_before, true, 4); ival[2][0] = PathInterval(n2_before, mid2, false, 4); ival[2][1] = PathInterval(mid2, n2_before, false, 4); ival[2][2] = PathInterval(n2_before, mid2, true, 4); ival[2][3] = PathInterval(mid2, n2_before, true, 4); ival[3][0] = PathInterval(mid2, mid3, false, 4); ival[3][1] = PathInterval(mid3, mid2, false, 4); ival[3][2] = PathInterval(mid2, mid3, true, 4); ival[3][3] = PathInterval(mid3, mid2, true, 4); ival[4][0] = PathInterval(n2_after, n3_before, false, 4); ival[4][1] = PathInterval(n3_before, n2_after, false, 4); ival[4][2] = PathInterval(n2_after, n3_before, true, 4); ival[4][3] = PathInterval(n3_before, n2_after, true, 4); EXPECT_TRUE(ival[0][0].contains(n2_before)); EXPECT_TRUE(ival[0][0].contains(n2_after)); EXPECT_TRUE(ival[0][1].contains(n2_before)); EXPECT_TRUE(ival[0][1].contains(n2_after)); for (unsigned i = 0; i <= 4; ++i) { EXPECT_FALSE(ival[i][0].reverse()); EXPECT_TRUE(ival[i][1].reverse()); EXPECT_TRUE(ival[i][2].reverse()); EXPECT_FALSE(ival[i][3].reverse()); } for (unsigned i = 0; i <= 4; ++i) { for (unsigned j = 0; j <= 3; ++j) { //std::cout << i << " " << j << " " << ival[i][j] << std::endl; EXPECT_TRUE(ival[i][j].contains(ival[i][j].inside(1e-3))); } } PathTime n1(1, 0.0), n1x(0, 1.0), n2(2, 0.0), n2x(1, 1.0), n3(3, 0.0), n3x(2, 1.0); PathTime tests[8] = { n1, n1x, n2, n2x, n3, n3x, mid2, mid3 }; // 0: false for both // 1: true for normal, false for cross_start // 2: false for normal, true for cross_start // 3: true for both int const NORMAL = 1, CROSS = 2, BOTH = 3; int includes[5][8] = { { CROSS, CROSS, NORMAL, NORMAL, CROSS, CROSS, CROSS, CROSS }, { CROSS, CROSS, NORMAL, NORMAL, NORMAL, NORMAL, NORMAL, CROSS }, { CROSS, CROSS, NORMAL, NORMAL, CROSS, CROSS, BOTH, CROSS }, { CROSS, CROSS, CROSS, CROSS, NORMAL, NORMAL, BOTH, BOTH }, { CROSS, CROSS, CROSS, CROSS, CROSS, CROSS, NORMAL, CROSS } }; unsigned sizes[5][2] = { { 2, 4 }, { 3, 3 }, { 2, 4 }, { 2, 4 }, { 1, 5 } }; for (unsigned i = 0; i < 5; ++i) { for (unsigned j = 0; j < 8; ++j) { EXPECT_EQ(ival[i][0].contains(tests[j]), bool(includes[i][j] & NORMAL)); EXPECT_EQ(ival[i][1].contains(tests[j]), bool(includes[i][j] & NORMAL)); EXPECT_EQ(ival[i][2].contains(tests[j]), bool(includes[i][j] & CROSS)); EXPECT_EQ(ival[i][3].contains(tests[j]), bool(includes[i][j] & CROSS)); } EXPECT_EQ(ival[i][0].curveCount(), sizes[i][0]); EXPECT_EQ(ival[i][1].curveCount(), sizes[i][0]); EXPECT_EQ(ival[i][2].curveCount(), sizes[i][1]); EXPECT_EQ(ival[i][3].curveCount(), sizes[i][1]); } } TEST_F(PathTest, Continuity) { line.checkContinuity(); square.checkContinuity(); circle.checkContinuity(); diederik.checkContinuity(); cmds.checkContinuity(); } TEST_F(PathTest, RectConstructor) { Rect r(Point(0,0), Point(10,10)); Path rpath(r); EXPECT_EQ(rpath.size(), 4u); EXPECT_TRUE(rpath.closed()); for (unsigned i = 0; i < 4; ++i) { EXPECT_TRUE(dynamic_cast(&rpath[i]) != NULL); EXPECT_EQ(rpath[i].initialPoint(), r.corner(i)); } } TEST_F(PathTest, Reversed) { std::vector a, r; a.push_back(p_open); a.push_back(p_closed); a.push_back(circle); a.push_back(diederik); a.push_back(cmds); for (auto & i : a) { r.push_back(i.reversed()); } for (unsigned i = 0; i < a.size(); ++i) { EXPECT_EQ(r[i].size(), a[i].size()); EXPECT_EQ(r[i].initialPoint(), a[i].finalPoint()); EXPECT_EQ(r[i].finalPoint(), a[i].initialPoint()); EXPECT_EQ(r[i].reversed(), a[i]); Point p1 = r[i].pointAt(0.75); Point p2 = a[i].pointAt(a[i].size() - 0.75); EXPECT_FLOAT_EQ(p1[X], p2[X]); EXPECT_FLOAT_EQ(p1[Y], p2[Y]); EXPECT_EQ(r[i].closed(), a[i].closed()); a[i].checkContinuity(); } } TEST_F(PathTest, ValueAt) { EXPECT_EQ(Point(0,0), line.initialPoint()); EXPECT_EQ(Point(1,0), line.finalPoint()); EXPECT_EQ(Point(0.5, 0.0), line.pointAt(0.5)); EXPECT_EQ(Point(0,0), square.initialPoint()); EXPECT_EQ(Point(0,0), square.finalPoint()); EXPECT_EQ(Point(1,0), square.pointAt(1)); EXPECT_EQ(Point(0.5,1), square.pointAt(2.5)); EXPECT_EQ(Point(0,0.5), square.pointAt(3.5)); EXPECT_EQ(Point(0,0), square.pointAt(4)); } TEST_F(PathTest, NearestPoint) { EXPECT_EQ(0, line.nearestTime(Point(0,0)).asFlatTime()); EXPECT_EQ(0.5, line.nearestTime(Point(0.5,0)).asFlatTime()); EXPECT_EQ(0.5, line.nearestTime(Point(0.5,1)).asFlatTime()); EXPECT_EQ(1, line.nearestTime(Point(100,0)).asFlatTime()); EXPECT_EQ(0, line.nearestTime(Point(-100,1000)).asFlatTime()); EXPECT_EQ(0, square.nearestTime(Point(0,0)).asFlatTime()); EXPECT_EQ(1, square.nearestTime(Point(1,0)).asFlatTime()); EXPECT_EQ(3, square.nearestTime(Point(0,1)).asFlatTime()); //cout << diederik.nearestTime(Point(247.32293,-43.339507)) << endl; Point p(511.75,40.85); EXPECT_FLOAT_EQ(6.5814033, diederik.nearestTime(p).asFlatTime()); /*cout << diederik.pointAt(diederik.nearestTime(p)) << endl << diederik.pointAt(6.5814033) << endl << distance(diederik.pointAt(diederik.nearestTime(p)), p) << " " << distance(diederik.pointAt(6.5814033), p) << endl;*/ } TEST_F(PathTest, Winding) { // test points in special positions EXPECT_EQ(line.winding(Point(-1, 0)), 0); EXPECT_EQ(line.winding(Point(2, 0)), 0); EXPECT_EQ(line.winding(Point(0, 1)), 0); EXPECT_EQ(line.winding(Point(0, -1)), 0); EXPECT_EQ(line.winding(Point(1, 1)), 0); EXPECT_EQ(line.winding(Point(1, -1)), 0); EXPECT_EQ(square.winding(Point(0, -1)), 0); EXPECT_EQ(square.winding(Point(1, -1)), 0); EXPECT_EQ(square.winding(Point(0, 2)), 0); EXPECT_EQ(square.winding(Point(1, 2)), 0); EXPECT_EQ(square.winding(Point(-1, 0)), 0); EXPECT_EQ(square.winding(Point(-1, 1)), 0); EXPECT_EQ(square.winding(Point(2, 0)), 0); EXPECT_EQ(square.winding(Point(2, 1)), 0); EXPECT_EQ(square.winding(Point(0.5, 0.5)), 1); EXPECT_EQ(circle.winding(Point(-4.5,0)), 1); EXPECT_EQ(circle.winding(Point(-3.5,0)), 1); EXPECT_EQ(circle.winding(Point(-4.5,1)), 1); EXPECT_EQ(circle.winding(Point(-10,0)), 0); EXPECT_EQ(circle.winding(Point(1,0)), 0); Path yellipse = string_to_path("M 0,0 A 40 20 90 0 0 0,-80 40 20 90 0 0 0,0 z"); EXPECT_EQ(yellipse.winding(Point(-1, 0)), 0); EXPECT_EQ(yellipse.winding(Point(-1, -80)), 0); EXPECT_EQ(yellipse.winding(Point(1, 0)), 0); EXPECT_EQ(yellipse.winding(Point(1, -80)), 0); EXPECT_EQ(yellipse.winding(Point(0, -40)), -1); std::vector r[4]; r[0] = yellipse[0].roots(0, Y); r[1] = yellipse[0].roots(-80, Y); r[2] = yellipse[1].roots(0, Y); r[3] = yellipse[1].roots(-80, Y); for (auto & i : r) { for (double j : i) { std::cout << format_coord_nice(j) << " "; } std::cout << std::endl; } std::cout << yellipse[0].unitTangentAt(0) << " " << yellipse[0].unitTangentAt(1) << " " << yellipse[1].unitTangentAt(0) << " " << yellipse[1].unitTangentAt(1) << std::endl; Path half_ellipse = string_to_path("M 0,0 A 40 20 90 0 0 0,-80 L -20,-40 z"); EXPECT_EQ(half_ellipse.winding(Point(-1, 0)), 0); EXPECT_EQ(half_ellipse.winding(Point(-1, -80)), 0); EXPECT_EQ(half_ellipse.winding(Point(1, 0)), 0); EXPECT_EQ(half_ellipse.winding(Point(1, -80)), 0); EXPECT_EQ(half_ellipse.winding(Point(0, -40)), -1); // extra nasty cases with exact double roots Path hump = string_to_path("M 0,0 Q 1,1 2,0 L 2,2 0,2 Z"); EXPECT_EQ(hump.winding(Point(0.25, 0.5)), 1); EXPECT_EQ(hump.winding(Point(1.75, 0.5)), 1); Path hump2 = string_to_path("M 0,0 L 2,0 2,2 Q 1,1 0,2 Z"); EXPECT_EQ(hump2.winding(Point(0.25, 1.5)), 1); EXPECT_EQ(hump2.winding(Point(1.75, 1.5)), 1); } /// Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/58 TEST_F(PathTest, Issue58) { auto const random_point_in = [](Geom::Rect const &box) -> Point { Coord const x = g_random_double_range(box[X].min(), box[X].max()); Coord const y = g_random_double_range(box[Y].min(), box[Y].max()); return {x, y}; }; auto const verify_windings = [](Ellipse const &e, Path const &path, Point const &pt) { int const winding = path.winding(pt); if (e.contains(pt)) { EXPECT_EQ(winding, 1); } else { EXPECT_EQ(winding, 0); } }; // Example elliptical path from issue https://gitlab.com/inkscape/lib2geom/-/issues/58 char const *const issue_d = "M 495.8157837290847 280.07459226562503" "A 166.63407933993605 132.04407218873035 0 0 1 329.1817043891487 412.11866445435544" "A 166.63407933993605 132.04407218873035 0 0 1 162.54762504921263 280.07459226562503" "A 166.63407933993605 132.04407218873035 0 0 1 329.1817043891487 148.0305200768947" "A 166.63407933993605 132.04407218873035 0 0 1 495.8157837290847 280.07459226562503" "z"; auto const pv = parse_svg_path(issue_d); auto const issue_ellipse = Ellipse(Point(329.1817043891487, 280.07459226562503), Point(166.63407933993605, 132.04407218873035), 0); auto box = issue_ellipse.boundsExact(); box.expandBy(1.0); g_random_set_seed(0xE111BB5E); for (size_t _ = 0; _ < 10'000; _++) { verify_windings(issue_ellipse, pv[0], random_point_in(box)); } } TEST_F(PathTest, SVGRoundtrip) { SVGPathWriter sw; Path transformed = diederik * (Rotate(1.23456789) * Scale(1e-8) * Translate(1e-9, 1e-9)); for (unsigned i = 0; i < 4; ++i) { sw.setOptimize(i & 1); sw.setUseShorthands(i & 2); sw.feed(line); //cout << sw.str() << endl; Path line_svg = string_to_path(sw.str().c_str()); EXPECT_TRUE(line_svg == line); sw.clear(); sw.feed(square); //cout << sw.str() << endl; Path square_svg = string_to_path(sw.str().c_str()); EXPECT_TRUE(square_svg == square); sw.clear(); sw.feed(circle); //cout << sw.str() << endl; Path circle_svg = string_to_path(sw.str().c_str()); EXPECT_TRUE(circle_svg == circle); sw.clear(); sw.feed(arcs); //cout << sw.str() << endl; Path arcs_svg = string_to_path(sw.str().c_str()); EXPECT_TRUE(arcs_svg == arcs); sw.clear(); sw.feed(diederik); //cout << sw.str() << endl; Path diederik_svg = string_to_path(sw.str().c_str()); EXPECT_TRUE(diederik_svg == diederik); sw.clear(); sw.feed(transformed); //cout << sw.str() << endl; Path transformed_svg = string_to_path(sw.str().c_str()); EXPECT_TRUE(transformed_svg == transformed); sw.clear(); sw.feed(cmds); //cout << sw.str() << endl; Path cmds_svg = string_to_path(sw.str().c_str()); EXPECT_TRUE(cmds_svg == cmds); sw.clear(); } } TEST_F(PathTest, Portion) { PathTime a(0, 0.5), b(3, 0.5); PathTime c(1, 0.25), d(1, 0.75); EXPECT_EQ(square.portion(a, b), string_to_path("M 0.5, 0 L 1,0 1,1 0,1 0,0.5")); EXPECT_EQ(square.portion(b, a), string_to_path("M 0,0.5 L 0,1 1,1 1,0 0.5,0")); EXPECT_EQ(square.portion(a, b, true), string_to_path("M 0.5,0 L 0,0 0,0.5")); EXPECT_EQ(square.portion(b, a, true), string_to_path("M 0,0.5 L 0,0 0.5,0")); EXPECT_EQ(square.portion(c, d), string_to_path("M 1,0.25 L 1,0.75")); EXPECT_EQ(square.portion(d, c), string_to_path("M 1,0.75 L 1,0.25")); EXPECT_EQ(square.portion(c, d, true), string_to_path("M 1,0.25 L 1,0 0,0 0,1 1,1 1,0.75")); EXPECT_EQ(square.portion(d, c, true), string_to_path("M 1,0.75 L 1,1 0,1 0,0 1,0 1,0.25")); // verify that no matter how an endpoint is specified, the result is the same PathTime a1(0, 1.0), a2(1, 0.0); PathTime b1(2, 1.0), b2(3, 0.0); Path result = string_to_path("M 1,0 L 1,1 0,1"); EXPECT_EQ(square.portion(a1, b1), result); EXPECT_EQ(square.portion(a1, b2), result); EXPECT_EQ(square.portion(a2, b1), result); EXPECT_EQ(square.portion(a2, b2), result); } TEST_F(PathTest, AppendSegment) { Path p_open = line, p_closed = line; p_open.setStitching(true); p_open.append(new LineSegment(Point(10,20), Point(10,25))); EXPECT_EQ(p_open.size(), 3u); EXPECT_NO_THROW(p_open.checkContinuity()); p_closed.setStitching(true); p_closed.close(true); p_closed.append(new LineSegment(Point(10,20), Point(10,25))); EXPECT_EQ(p_closed.size(), 4u); EXPECT_NO_THROW(p_closed.checkContinuity()); } TEST_F(PathTest, AppendPath) { p_open.append(p_add); Path p_expected = string_to_path("M 0,0 L 0,5 5,5 5,0 -1,6 6,6"); EXPECT_EQ(p_open.size(), 5u); EXPECT_EQ(p_open, p_expected); EXPECT_NO_THROW(p_open.checkContinuity()); p_expected.close(true); p_closed.append(p_add); EXPECT_EQ(p_closed.size(), 6u); EXPECT_EQ(p_closed, p_expected); EXPECT_NO_THROW(p_closed.checkContinuity()); } TEST_F(PathTest, AppendPortion) { // A closed path with two curves: Path bigon = string_to_path("M 0,0 Q 1,1 2,0 Q 1,-1 0,0 Z"); Path target{Point(0, 0)}; PathTime end_time{1, 1.0}; // End of the closed path PathTime mid_time{1, 0.0}; // Middle of the closed path (juncture between the two curves) bigon.appendPortionTo(target, end_time, mid_time, true /* do cross start */); // We expect that the target path now contains the entire first curve "M 0,0 Q 1,1 2,0", // since we started at the end of a closed path and requested to cross its start. EXPECT_EQ(target.size(), 1); EXPECT_EQ(target, string_to_path("M 0,0 Q 1,1 2,0")); // Similar test but with reversal (swapped times) Path target_reverse{Point(2, 0)}; bigon.appendPortionTo(target_reverse, mid_time, end_time, true /* do cross start please */); // What do we expect? To cross start going from the midpoint to the endpoint requires // not taking the obvious route (bigon[1]) but rather taking bigon[0] in reverse. EXPECT_EQ(target_reverse.size(), 1); EXPECT_EQ(target_reverse, string_to_path("M 2,0 Q 1,1 0,0")); // Similar test but using start time PathTime start_time{0, 0.0}; Path mid_target{Point(2, 0)}; bigon.appendPortionTo(mid_target, mid_time, start_time, true /* cross start to 0:0 */); // We expect to go forward from mid_time and cross over the start to start_time. EXPECT_EQ(mid_target.size(), 1); EXPECT_EQ(mid_target, string_to_path("M 2,0 Q 1,-1 0,0")); // Use start time with reversal Path mid_reverse{Point(0, 0)}; bigon.appendPortionTo(mid_reverse, start_time, mid_time, true /* Cross start, going backwards. */); // We expect that we don't go forwards from start_time to mid_time, but rather cross over the starting // point and backtrack over bigon[1] to the midpoint. EXPECT_EQ(mid_reverse.size(), 1); EXPECT_EQ(mid_reverse, string_to_path("M 0,0 Q 1,-1 2,0")); } TEST_F(PathTest, ReplaceMiddle) { p_open.replace(p_open.begin() + 1, p_open.begin() + 2, p_add); EXPECT_EQ(p_open.size(), 5u); EXPECT_NO_THROW(p_open.checkContinuity()); p_closed.replace(p_closed.begin() + 1, p_closed.begin() + 2, p_add); EXPECT_EQ(p_closed.size(), 6u); EXPECT_NO_THROW(p_closed.checkContinuity()); } TEST_F(PathTest, ReplaceStart) { p_open.replace(p_open.begin(), p_open.begin() + 2, p_add); EXPECT_EQ(p_open.size(), 3u); EXPECT_NO_THROW(p_open.checkContinuity()); p_closed.replace(p_closed.begin(), p_closed.begin() + 2, p_add); EXPECT_EQ(p_closed.size(), 5u); EXPECT_NO_THROW(p_closed.checkContinuity()); } TEST_F(PathTest, ReplaceEnd) { p_open.replace(p_open.begin() + 1, p_open.begin() + 3, p_add); EXPECT_EQ(p_open.size(), 3u); EXPECT_NO_THROW(p_open.checkContinuity()); p_closed.replace(p_closed.begin() + 1, p_closed.begin() + 3, p_add); EXPECT_EQ(p_closed.size(), 5u); EXPECT_NO_THROW(p_closed.checkContinuity()); } TEST_F(PathTest, ReplaceClosing) { p_open.replace(p_open.begin() + 1, p_open.begin() + 4, p_add); EXPECT_EQ(p_open.size(), 3u); EXPECT_NO_THROW(p_open.checkContinuity()); p_closed.replace(p_closed.begin() + 1, p_closed.begin() + 4, p_add); EXPECT_EQ(p_closed.size(), 4u); EXPECT_NO_THROW(p_closed.checkContinuity()); } TEST_F(PathTest, ReplaceEverything) { p_open.replace(p_open.begin(), p_open.end(), p_add); EXPECT_EQ(p_open.size(), 1u); EXPECT_NO_THROW(p_open.checkContinuity()); // TODO: in this specific case, it may make sense to set the path to open... // Need to investigate what behavior is sensible here p_closed.replace(p_closed.begin(), p_closed.end(), p_add); EXPECT_EQ(p_closed.size(), 2u); EXPECT_NO_THROW(p_closed.checkContinuity()); } TEST_F(PathTest, EraseLast) { p_open.erase_last(); Path p_expected = string_to_path("M 0,0 L 0,5 5,5"); EXPECT_EQ(p_open, p_expected); EXPECT_NO_THROW(p_open.checkContinuity()); } TEST_F(PathTest, AreNear) { Path nudged_arcs1 = string_to_path("M 0,0 a 5,10 45 0 1 10,10.0000005 a 5,10 45 0 1 0,0 z"); Path nudged_arcs2 = string_to_path("M 0,0 a 5,10 45 0 1 10,10.00005 a 5,10 45 0 1 0,0 z"); EXPECT_EQ(are_near(diederik, diederik, 0), true); EXPECT_EQ(are_near(cmds, diederik, 1e-6), false); EXPECT_EQ(are_near(arcs, nudged_arcs1, 1e-6), true); EXPECT_EQ(are_near(arcs, nudged_arcs2, 1e-6), false); } TEST_F(PathTest, Roots) { Path path; path.start(Point(0, 0)); path.appendNew(Point(1, 1)); path.appendNew(Point(2, 0)); EXPECT_FALSE(path.closed()); // Trivial case: make sure that path is not closed std::vector roots = path.roots(0.5, Geom::X); EXPECT_EQ(roots.size(), 1u); EXPECT_EQ(path.valueAt(roots[0], Geom::Y), 0.5); // Now check that it is closed if we make it so path.close(true); roots = path.roots(0.5, Geom::X); EXPECT_EQ(roots.size(), 2u); } TEST_F(PathTest, PartingPoint) { // === Test complete overlaps between identical curves === // Line segment auto line = string_to_path("M 0,0 L 3.33, 7.77"); auto pt = parting_point(line, line); EXPECT_TRUE(are_near(pt.point(), line.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 1.0)); // Cubic Bézier auto bezier = string_to_path("M 0,0 C 1,1 14,1 15,0"); pt = parting_point(bezier, bezier); EXPECT_TRUE(are_near(pt.point(), bezier.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 1.0)); // Eliptical arc auto const arc = string_to_path("M 0,0 A 100,20 0,0,0 200,0"); pt = parting_point(arc, arc); EXPECT_TRUE(are_near(pt.point(), arc.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 1.0)); // === Test complete overlap between degree-elevated and degree-shrunk Béziers === auto artificially_cubic = string_to_path("M 0,0 C 10,10 20,10 30,0"); auto really_quadratic = string_to_path("M 0,0 Q 15,15 30,0"); pt = parting_point(artificially_cubic, really_quadratic); EXPECT_TRUE(are_near(pt.point(), artificially_cubic.finalPoint())); EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0)); // === Test complete overlaps between a curve and its subdivision === // Straight line line = string_to_path("M 0,0 L 15,15"); auto subdivided_line = string_to_path("M 0,0 L 3,3 L 4,4 L 9,9 L 15,15"); pt = parting_point(line, subdivided_line); EXPECT_TRUE(are_near(pt.point(), line.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 1.0)); // Cubic Bézier bezier = string_to_path("M 0,0 C 0,40 50,40 50,0"); auto de_casteljau = string_to_path("M 0,0 C 0,10 3.125,17.5 7.8125,22.5 12.5,27.5 18.75,30 25,30" " 31.25,30 37.5,27.5 42.1875,22.5 46.875,17.5 50,10 50,0"); pt = parting_point(bezier, de_casteljau); EXPECT_TRUE(are_near(pt.point(), bezier.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 1.0)); // Eliptical arc auto subdivided_arc = string_to_path("M 0,0 A 100,20, 0,0,0 100,20 A 100,20 0,0,0 200,0"); pt = parting_point(arc, subdivided_arc); EXPECT_TRUE(are_near(pt.point(), arc.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 1.0)); // === Test complete overlap between different subdivisions === auto line1 = string_to_path("M 0,0 L 3,3 L 5,5 L 10,10"); auto line2 = string_to_path("M 0,0 L 2,2 L 4.2,4.2 L 4.5,4.5 L 6,6 L 10,10"); pt = parting_point(line1, line2); EXPECT_TRUE(are_near(pt.point(), line1.finalPoint())); EXPECT_TRUE(are_near(pt.first.asFlatTime(), line1.timeRange().max())); EXPECT_TRUE(are_near(pt.second.asFlatTime(), line2.timeRange().max())); // === Test complete overlaps in the presence of degenerate segments === // Straight line line = string_to_path("M 0,0 L 15,15"); subdivided_line = string_to_path("M 0,0 L 3,3 H 3 V 3 L 3,3 L 4,4 H 4 V 4 L 4,4 L 9,9 H 9 L 15,15"); pt = parting_point(line, subdivided_line); EXPECT_TRUE(are_near(pt.point(), line.finalPoint())); EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0)); // Eliptical arc auto arc_degen = string_to_path("M 0,0 A 100,20, 0,0,0 100,20 H 100 V 20 L 100,20 A 100,20 0,0,0 200,0"); pt = parting_point(arc, arc_degen); EXPECT_TRUE(are_near(pt.point(), arc.finalPoint())); EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0)); // === Paths that overlap but one is shorter than the other === // Straight lines auto long_line = string_to_path("M 0,0 L 20,10"); auto short_line = string_to_path("M 0,0 L 4,2"); pt = parting_point(long_line, short_line); EXPECT_TRUE(are_near(pt.point(), short_line.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 0.2)); EXPECT_TRUE(are_near(pt.second.t, 1.0)); // Cubic Bézier auto const s_shape = string_to_path("M 0,0 C 10, 0 0,10 10,10"); auto half_s = string_to_path("M 0,0 C 5,0 5,2.5 5,5"); pt = parting_point(s_shape, half_s); EXPECT_TRUE(are_near(pt.first.t, 0.5)); EXPECT_TRUE(are_near(pt.second.t, 1.0)); // Elliptical arc auto quarter_ellipse = string_to_path("M 0,0 A 100,20, 0,0,0 100,20"); pt = parting_point(arc, quarter_ellipse); EXPECT_TRUE(are_near(pt.point(), quarter_ellipse.finalPoint())); EXPECT_TRUE(are_near(pt.first.t, 0.5)); EXPECT_TRUE(are_near(pt.second.t, 1.0)); // === Paths that overlap initially but then they split === // Straight lines auto boring_line = string_to_path("M 0,0 L 50,10"); auto line_then_arc = string_to_path("M 0,0 L 5,1 A 1,1 0,0,0 7,1"); pt = parting_point(boring_line, line_then_arc); EXPECT_TRUE(are_near(pt.point(), Point(5, 1))); EXPECT_TRUE(are_near(pt.first.t, 0.1)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0)); // Cubic Bézier auto half_s_then_line = string_to_path("M 0,0 C 5,0 5,2.5 5,5 L 10,10"); pt = parting_point(s_shape, half_s_then_line); EXPECT_TRUE(are_near(pt.point(), Point(5, 5))); EXPECT_TRUE(are_near(pt.first.t, 0.5)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0)); // Elliptical arc auto quarter_ellipse_then_quadratic = string_to_path("M 0,0 A 100,20, 0,0,0 100,20 Q 120,40 140,60"); pt = parting_point(arc, quarter_ellipse_then_quadratic); EXPECT_TRUE(are_near(pt.point(), Point(100, 20))); EXPECT_TRUE(are_near(pt.first.t, 0.5)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0)); // === Paths that split at a common node === // Polylines auto branch_90 = string_to_path("M 0,0 H 3 H 6 V 7"); auto branch_45 = string_to_path("M 0,0 H 2 H 6 L 7,7"); pt = parting_point(branch_90, branch_45); EXPECT_TRUE(are_near(pt.point(), Point(6, 0))); EXPECT_TRUE(are_near(pt.first.asFlatTime(), 2.0)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 2.0)); // Arcs auto quarter_circle_then_horiz = string_to_path("M 0,0 A 1,1 0,0,0 1,1 H 10"); auto quarter_circle_then_slant = string_to_path("M 0,0 A 1,1 0,0,0 1,1 L 10, 1.1"); pt = parting_point(quarter_circle_then_horiz, quarter_circle_then_slant); EXPECT_TRUE(are_near(pt.point(), Point(1, 1))); EXPECT_TRUE(are_near(pt.first.asFlatTime(), 1.0)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 1.0)); // Last common nodes followed by degenerates auto degen_horiz = string_to_path("M 0,0 A 1,1 0,0,0 1,1 V 1 H 1 L 1,1 H 10"); auto degen_slant = string_to_path("M 0,0 A 1,1 0,0,0 1,1 V 1 H 1 L 1,1 L 10, 1.1"); pt = parting_point(quarter_circle_then_horiz, quarter_circle_then_slant); EXPECT_TRUE(are_near(pt.point(), Point(1, 1))); // === Paths that split at the starting point === auto vertical = string_to_path("M 0,0 V 1"); auto quarter = string_to_path("M 0,0 A 1,1 0,0,0, 1,1"); pt = parting_point(vertical, quarter); EXPECT_TRUE(are_near(pt.point(), Point(0, 0))); EXPECT_TRUE(are_near(pt.first.asFlatTime(), 0.0)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 0.0)); // === Symmetric split (both legs of the same length) === auto left_leg = string_to_path("M 1,0 L 0,10"); auto right_leg = string_to_path("M 1,0 L 2,10"); pt = parting_point(left_leg, right_leg); EXPECT_TRUE(are_near(pt.point(), Point(1, 0))); EXPECT_TRUE(are_near(pt.first.asFlatTime(), 0.0)); EXPECT_TRUE(are_near(pt.second.asFlatTime(), 0.0)); // === Different starting points === auto start_at_0_0 = string_to_path("M 0,0 C 1,0 0,1 1,1"); auto start_at_10_10 = string_to_path("M 10,10 L 50,50"); pt = parting_point(start_at_0_0, start_at_10_10); EXPECT_TRUE(are_near(pt.point(), Point (5,5))); EXPECT_DOUBLE_EQ(pt.first.t, -1.0); EXPECT_DOUBLE_EQ(pt.second.t, -1.0); EXPECT_EQ(pt.first.curve_index, 0); EXPECT_EQ(pt.second.curve_index, 0); } TEST_F(PathTest, InitialFinalTangents) { // Test tangents for an open path auto L_shape = string_to_path("M 1,1 H 0 V 0"); EXPECT_EQ(L_shape.initialUnitTangent(), Point(-1.0, 0.0)); EXPECT_EQ(L_shape.finalUnitTangent(), Point(0.0, -1.0)); // Closed path with non-degenerate closing segment auto triangle = string_to_path("M 0,0 H 2 L 0,3 Z"); EXPECT_EQ(triangle.initialUnitTangent(), Point(1.0, 0.0)); EXPECT_EQ(triangle.finalUnitTangent(), Point(0.0, -1.0)); // Closed path with a degenerate closing segment auto full360 = string_to_path("M 0,0 A 1,1, 0,1,1, 0,2 A 1,1 0,1,1 0,0 Z"); EXPECT_EQ(full360.initialUnitTangent(), Point(1.0, 0.0)); EXPECT_EQ(full360.finalUnitTangent(), Point(1.0, 0.0)); // Test multiple degenerate segments at the start auto start_degen = string_to_path("M 0,0 L 0,0 H 0 V 0 Q 1,0 1,1"); EXPECT_EQ(start_degen.initialUnitTangent(), Point(1.0, 0.0)); // Test multiple degenerate segments at the end auto end_degen = string_to_path("M 0,0 L 1,1 H 1 V 1 L 1,1"); double comp = 1.0 / sqrt(2.0); EXPECT_EQ(end_degen.finalUnitTangent(), Point(comp, comp)); // Test a long and complicated path with both tangents along the positive x-axis. auto complicated = string_to_path("M 0,0 H 0 L 1,0 C 2,1 3,2 1,0 L 1,0 H 1 Q 2,3 0,5 H 2"); EXPECT_EQ(complicated.initialUnitTangent(), Point(1.0, 0.0)); EXPECT_EQ(complicated.finalUnitTangent(), Point(1.0, 0.0)); } TEST_F(PathTest, WithoutDegenerates) { // Ensure nothing changes when there are no degenerate segments to remove. auto plain_open = string_to_path("M 0,0 Q 5,5 10,10"); EXPECT_EQ(plain_open, plain_open.withoutDegenerateCurves()); auto closed_nondegen_closing = string_to_path("M 0,0 L 5,5 H 0 Z"); EXPECT_EQ(closed_nondegen_closing,closed_nondegen_closing.withoutDegenerateCurves()); // Ensure that a degenerate closing segment is left alone. auto closed_degen_closing = string_to_path("M 0,0 L 2,4 H 0 L 0,0 Z"); EXPECT_EQ(closed_degen_closing, closed_degen_closing.withoutDegenerateCurves()); // Ensure that a trivial path is left alone (both open and closed). auto trivial_open = string_to_path("M 0,0"); EXPECT_EQ(trivial_open, trivial_open.withoutDegenerateCurves()); auto trivial_closed = string_to_path("M 0,0 Z"); EXPECT_EQ(trivial_closed, trivial_closed.withoutDegenerateCurves()); // Ensure that initial degenerate segments are removed auto degen_start = string_to_path("M 0,0 L 0,0 H 0 V 0 Q 5,5 10,10"); auto degen_start_cleaned = degen_start.withoutDegenerateCurves(); EXPECT_EQ(degen_start_cleaned, string_to_path("M 0,0 Q 5,5 10,10")); EXPECT_NE(degen_start.size(), degen_start_cleaned.size()); // Ensure that degenerate segments are removed from the middle auto degen_middle = string_to_path("M 0,0 L 1,1 H 1 V 1 L 1,1 Q 6,6 10,10"); auto degen_middle_cleaned = degen_middle.withoutDegenerateCurves(); EXPECT_EQ(degen_middle_cleaned, string_to_path("M 0,0 L 1,1 Q 6,6 10,10")); EXPECT_NE(degen_middle.size(), degen_middle_cleaned.size()); // Ensure that degenerate segment are removed from the end of an open path auto end_open = string_to_path("M 0,0 L 1,1 H 1 V 1 L 1,1"); auto end_open_cleaned = end_open.withoutDegenerateCurves(); EXPECT_EQ(end_open_cleaned, string_to_path("M 0,0 L 1,1")); EXPECT_NE(end_open.size(), end_open_cleaned.size()); // Ensure removal of degenerates just before the closing segment auto end_nondegen = string_to_path("M 0,0 L 1,1 L 0,1 H 0 V 1 Z"); auto end_nondegen_cleaned = end_nondegen.withoutDegenerateCurves(); EXPECT_EQ(end_nondegen_cleaned, string_to_path("M 0,0 L 1,1 L 0,1 Z")); EXPECT_NE(end_nondegen.size(), end_nondegen_cleaned.size()); } /** Test Path::extrema() */ TEST_F(PathTest, GetExtrema) { // Circle of radius 4.5 centered at (-4.5, 0). auto extrema_x = circle.extrema(X); EXPECT_EQ(extrema_x.min_point, Point(-9, 0)); EXPECT_EQ(extrema_x.max_point, Point( 0, 0)); EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 1.0); EXPECT_DOUBLE_EQ(extrema_x.max_time.asFlatTime(), 0.0); EXPECT_EQ(extrema_x.glance_direction_at_min, -1.0); EXPECT_EQ(extrema_x.glance_direction_at_max, 1.0); auto extrema_y = circle.extrema(Y); EXPECT_EQ(extrema_y.min_point, Point(-4.5, -4.5)); EXPECT_EQ(extrema_y.max_point, Point(-4.5, 4.5)); EXPECT_DOUBLE_EQ(extrema_y.min_time.asFlatTime(), 1.5); EXPECT_DOUBLE_EQ(extrema_y.max_time.asFlatTime(), 0.5); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min, 1.0); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, -1.0); // Positively oriented unit square extrema_x = square.extrema(X); EXPECT_DOUBLE_EQ(extrema_x.min_point[X], 0.0); EXPECT_DOUBLE_EQ(extrema_x.max_point[X], 1.0); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, 1.0); extrema_y = square.extrema(Y); EXPECT_DOUBLE_EQ(extrema_y.min_point[Y], 0.0); EXPECT_DOUBLE_EQ(extrema_y.max_point[Y], 1.0); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min, 1.0); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, -1.0); // Path glancing its min X line while going towards negative Y auto down_glance = string_to_path("M 1,18 L 0,0 1,-20"); extrema_x = down_glance.extrema(X); EXPECT_EQ(extrema_x.min_point, Point(0, 0)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0); EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 1.0); // Similar but not at a node auto down_glance_smooth = string_to_path("M 1,20 C 0,20 0,-20 1,-20"); extrema_x = down_glance_smooth.extrema(X); EXPECT_TRUE(are_near(extrema_x.min_point[Y], 0.0)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0); EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 0.5); // Path coming down to the min X and then retreating horizontally auto retreat = string_to_path("M 1,20 L 0,0 H 5 L 4,-20"); extrema_x = retreat.extrema(X); EXPECT_EQ(extrema_x.min_point, Point(0, 0)); EXPECT_EQ(extrema_x.max_point, Point(5, 0)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, -1.0); EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 1.0); EXPECT_DOUBLE_EQ(extrema_x.max_time.asFlatTime(), 2.0); // Perfectly horizontal path auto horizontal = string_to_path("M 0,0 H 12"); extrema_x = horizontal.extrema(X); extrema_y = horizontal.extrema(Y); EXPECT_EQ(extrema_x.min_point, Point(0, 0)); EXPECT_EQ(extrema_x.max_point, Point(12, 0)); EXPECT_DOUBLE_EQ(extrema_y.min_point[Y], 0.0); EXPECT_DOUBLE_EQ(extrema_y.max_point[Y], 0.0); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, 0.0); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, 0.0); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min, 1.0); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, 1.0); EXPECT_DOUBLE_EQ(extrema_x.min_time.asFlatTime(), 0.0); EXPECT_DOUBLE_EQ(extrema_x.max_time.asFlatTime(), 1.0); // Perfectly vertical path auto vertical = string_to_path("M 0,0 V 42"); extrema_y = vertical.extrema(Y); extrema_x = vertical.extrema(X); EXPECT_DOUBLE_EQ(extrema_x.min_point[Y], 0.0); EXPECT_DOUBLE_EQ(extrema_x.max_point[Y], 0.0); EXPECT_EQ(extrema_y.min_point, Point(0, 0)); EXPECT_EQ(extrema_y.max_point, Point(0, 42)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, 1.0); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, 1.0); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_min, 0.0); EXPECT_FLOAT_EQ(extrema_y.glance_direction_at_max, 0.0); EXPECT_DOUBLE_EQ(extrema_y.min_time.asFlatTime(), 0.0); EXPECT_DOUBLE_EQ(extrema_y.max_time.asFlatTime(), 1.0); // Detect downward glance at the closing point (degenerate closing segment) auto closed = string_to_path("M 0,0 L 1,-2 H 3 V 5 H 1 L 0,0 Z"); extrema_x = closed.extrema(X); EXPECT_EQ(extrema_x.min_point, Point(0, 0)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0); // Same but with a non-degenerate closing segment auto closed_nondegen = string_to_path("M 0,0 L 1,-2 H 3 V 5 H 1 Z"); extrema_x = closed_nondegen.extrema(X); EXPECT_EQ(extrema_x.min_point, Point(0, 0)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0); // Collapsed Bezier not glancing up nor down auto collapsed = string_to_path("M 10, 0 Q -10 0 10, 0"); extrema_x = collapsed.extrema(X); EXPECT_EQ(extrema_x.min_point, Point(0, 0)); EXPECT_EQ(extrema_x.max_point, Point(10, 0)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, 0.0); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_max, 0.0); // Degenerate segments at min X auto degen = string_to_path("M 0.01,20 L 0, 0 H 0 V 0 L 0,0 V 0 L 0.02 -30"); extrema_x = degen.extrema(X); EXPECT_EQ(extrema_x.min_point, Point(0, 0)); EXPECT_FLOAT_EQ(extrema_x.glance_direction_at_min, -1.0); } /** Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/50 */ TEST_F(PathTest, PizzaSlice) { auto pv = parse_svg_path("M 0 0 L 0.30901699437494745 0.9510565162951535 " "A 1 1 0 0 1 -0.8090169943749473 0.5877852522924732 z"); auto §or = pv[0]; Path piece; EXPECT_NO_THROW(piece = sector.portion(PathTime(0, 0.0), PathTime(2, 0.0), false)); EXPECT_FALSE(piece.closed()); EXPECT_TRUE(piece.size() == 2 || (piece.size() == 3 && piece[2].isDegenerate())); EXPECT_EQ(piece.finalPoint(), Point(-0.8090169943749473, 0.5877852522924732)); // Test slicing in the middle of an arc and past its end pv = parse_svg_path("M 0,0 H 1 A 1,1 0 0 1 0.3080657835086775,0.9513650577098072 z"); EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.5), PathTime(2, 1.0))); EXPECT_FALSE(piece.closed()); EXPECT_EQ(piece.finalPoint(), pv[0].finalPoint()); // Test slicing from before the start to a point on the arc EXPECT_NO_THROW(piece = pv[0].portion(PathTime(0, 0.5), PathTime(1, 0.5))); EXPECT_FALSE(piece.closed()); EXPECT_EQ(piece.initialPoint(), pv[0].pointAt(PathTime(0, 0.5))); EXPECT_EQ(piece.finalPoint(), pv[0].pointAt(PathTime(1, 0.5))); // Test slicing a part of the arc EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.25), PathTime(1, 0.75))); EXPECT_FALSE(piece.closed()); EXPECT_EQ(piece.size(), 1); // Test slicing in reverse EXPECT_NO_THROW(piece = pv[0].portion(PathTime(2, 1.0), PathTime(1, 0.5))); EXPECT_FALSE(piece.closed()); EXPECT_EQ(piece.finalPoint(), pv[0].pointAt(PathTime(1, 0.5))); EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.5), PathTime(0, 0.5))); EXPECT_FALSE(piece.closed()); EXPECT_EQ(piece.initialPoint(), pv[0].pointAt(PathTime(1, 0.5))); EXPECT_EQ(piece.finalPoint(), pv[0].pointAt(PathTime(0, 0.5))); EXPECT_NO_THROW(piece = pv[0].portion(PathTime(1, 0.75), PathTime(1, 0.25))); EXPECT_FALSE(piece.closed()); EXPECT_EQ(piece.size(), 1); } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :