/** @file * @brief Unit tests for PlanarGraph class template */ /* * Authors: * Rafał Siejakowski * * Copyright 2022 the Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include #include #include <2geom/point.h> #include <2geom/pathvector.h> #include <2geom/svg-path-parser.h> #include <2geom/svg-path-writer.h> #include "planar-graph.h" #include "testing.h" using namespace Geom; #define PV(d) (parse_svg_path(d)) #define PTH(d) (std::move(PV(d)[0])) #define REV(d) ((PV(d)[0]).reversed()) /** An edge label for the purpose of tests. */ struct TestLabel { unsigned reversal_count = 0, merge_count = 0, detachment_count = 0; void onReverse() { reversal_count++; } void onMergeWith(TestLabel const &) { merge_count++; } void onDetach() { detachment_count++; } }; using TestGraph = PlanarGraph; static std::vector extract_labels(TestGraph const &graph) { // Find labels of edges remaining in the graph. std::vector result; for (auto &e : graph.getEdges()) { if (!e.detached) { result.push_back(e.label); } } return result; } class PlanarGraphTest : public ::testing::Test { }; /** Test edge insertion and vertex clumping to within the tolerance. */ TEST(PlanarGraphTest, EdgeInsertion) { double const precision = 1e-3; auto graph = TestGraph(precision); graph.insertEdge(PTH("M 0, 0 L 1, 0")); graph.insertEdge(PTH("M 0, 1 L 1, 1")); // } Endpoints near graph.insertEdge(PTH("M 1, 0 L 1, 1.0009")); // } but not exact. auto vertices = graph.getVertices(); // Test vertex clumping within the given precision EXPECT_EQ(vertices.size(), 4); EXPECT_EQ(graph.numEdges(), 3); // Test lexicographic vertex position sorting by X and then Y EXPECT_EQ(vertices.front().point(), Point(0, 0)); auto after = std::next(vertices.begin()); EXPECT_EQ(after->point(), Point(0, 1)); ++after; EXPECT_EQ(after->point(), Point(1, 0)); EXPECT_TRUE(are_near(vertices.back().point(), Point(1, 1), precision)); EXPECT_FALSE(graph.isRegularized()); } /** Test PlanarGraph::insertDetached(). */ TEST(PlanarGraphTest, InsertDetached) { TestGraph graph; auto detached = graph.insertDetached(PTH("M 0,0 A 1,1 0,0,1 2,0 V -2 H 0 Z")); auto const &edges = graph.getEdges(); EXPECT_EQ(edges.size(), 1); EXPECT_TRUE(edges.at(detached).detached); EXPECT_TRUE(edges.at(detached).inserted_as_detached); EXPECT_EQ(graph.numVertices(), 0); EXPECT_EQ(graph.numEdges(false), 0); EXPECT_TRUE(graph.isRegularized()); } /** Test signed area calculation. */ TEST(PlanarGraphTest, ClosedPathArea) { // Square with counter-clockwise oriented boundary, when imagining that the y-axis // points up – expect the area to be +1. auto square_positive = PTH("M 0,0 H 1 V 1 H 0 Z"); EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(square_positive), 1.0); // Expect negative area for a negatively oriented path. auto triangle_negative = PTH("M 0,0 V 1 L 1,1 Z"); EXPECT_DOUBLE_EQ(TestGraph::closedPathArea(triangle_negative), -0.5); } /** Test the detection of direction of deviation of initially tangent paths. */ TEST(PlanarGraphTest, Deviation) { auto vertical_up = PTH("M 0,0 V 1"); auto arc_right1 = PTH("M 0,0 A 1,1 0,1,0 2,0"); auto arc_left1 = PTH("M 0,0 A 1,1 0,1,1 -2,0"); auto arc_right2 = PTH("M 0,0 A 2,2 0,1,0, 4,0"); auto arc_left2 = PTH("M 0,0 A 2,2 0,1,1 -4,0"); // A very "flat" Bézier curve deviating to the right but slower than the large arc auto bezier_right = PTH("M 0,0 C 0,50 1,20 2,10"); EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_left2)); EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, vertical_up)); EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, arc_right2)); EXPECT_TRUE(TestGraph::deviatesLeft(vertical_up, bezier_right)); EXPECT_TRUE(TestGraph::deviatesLeft(bezier_right, arc_right2)); EXPECT_TRUE(TestGraph::deviatesLeft(arc_right2, arc_right1)); EXPECT_TRUE(TestGraph::deviatesLeft(arc_left1, arc_right1)); EXPECT_TRUE(TestGraph::deviatesLeft(arc_left2, arc_right1)); EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, vertical_up)); EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_right2)); EXPECT_FALSE(TestGraph::deviatesLeft(vertical_up, arc_left2)); EXPECT_FALSE(TestGraph::deviatesLeft(arc_left2, arc_left1)); EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left1)); EXPECT_FALSE(TestGraph::deviatesLeft(arc_right1, arc_left2)); } /** Test sorting of incidences at a vertex by the outgoing heading. */ TEST(PlanarGraphTest, BasicAzimuthalSort) { TestGraph graph; // Imagine the Y-axis pointing up (as in mathematics)! bool const clockwise = true; unsigned const num_rays = 9; unsigned edges[num_rays]; // Insert the edges randomly but store them in what we know to be the // clockwise order of outgoing azimuths from the vertex at the origin. edges[7] = graph.insertEdge(PTH("M -0.2, -1 L 0, 0")); edges[1] = graph.insertEdge(PTH("M -1, 0.2 L 0, 0")); edges[4] = graph.insertEdge(PTH("M 0, 0 L 1, 0.2")); edges[6] = graph.insertEdge(PTH("M 0.1, -1 L 0, 0")); edges[2] = graph.insertEdge(PTH("M 0, 0 L -0.3, 1")); edges[0] = graph.insertEdge(PTH("M -1, 0 H 0")); edges[5] = graph.insertEdge(PTH("M 0, 0 L 1, -0.2")); edges[3] = graph.insertEdge(PTH("M 0.2, 1 L 0, 0")); edges[8] = graph.insertEdge(PTH("M -1, -0.1 L 0, 0")); // We expect the incidence to edges[0] to be the last one // in the sort order so it should appear first when going clockwise. auto [origin, incidence] = graph.getIncidence(edges[0], TestGraph::Incidence::END); ASSERT_TRUE(origin); ASSERT_TRUE(incidence); // Expect ±pi as the azimuth EXPECT_DOUBLE_EQ(std::abs(incidence->azimuth), M_PI); // Test sort order for (unsigned i = 0; i < num_rays; i++) { EXPECT_EQ(incidence->index, edges[i]); incidence = (TestGraph::Incidence *)&graph.nextIncidence(*origin, *incidence, clockwise); } } /** Test retrieval of a path inserted as an edge in both orientations. */ TEST(PlanarGraphTest, PathRetrieval) { TestGraph graph; Path const path = PTH("M 0,0 L 1,1 C 2,2 4,2 5,1"); Path const htap = path.reversed(); auto edge = graph.insertEdge(path); ASSERT_EQ(graph.numEdges(), 1); auto [start_point, start_incidence] = graph.getIncidence(edge, TestGraph::Incidence::START); ASSERT_TRUE(start_point); ASSERT_TRUE(start_incidence); EXPECT_EQ(graph.getOutgoingPath(start_incidence), path); EXPECT_EQ(graph.getIncomingPath(start_incidence), htap); auto [end_point, end_incidence] = graph.getIncidence(edge, TestGraph::Incidence::END); ASSERT_TRUE(end_point); ASSERT_TRUE(end_incidence); EXPECT_EQ(graph.getIncomingPath(end_incidence), path); EXPECT_EQ(graph.getOutgoingPath(end_incidence), htap); } /** Make sure the edge labels are correctly stored. */ TEST(PlanarGraphTest, LabelRetrieval) { TestGraph graph; TestLabel label; label.reversal_count = 420; label.merge_count = 69; label.detachment_count = 111; auto edge = graph.insertEdge(PTH("M 0,0 L 1,1"), std::move(label)); auto retrieved = graph.getEdge(edge).label; EXPECT_EQ(retrieved.reversal_count, 420); EXPECT_EQ(retrieved.merge_count, 69); EXPECT_EQ(retrieved.detachment_count, 111); } /** Regularization of duplicate edges. */ TEST(PlanarGraphTest, MergeDuplicate) { char const *const d = "M 2, 3 H 0 C 1,4 1,5 0,6 H 10 L 8, 0"; char const *const near_d = "M 2.0009,3 H 0 C 1,4 1,5 0,6 H 10.0009 L 8, 0.0005"; // Test removal of perfect overlap: TestGraph graph; graph.insertEdge(PTH(d)); graph.insertEdge(PTH(d)); // exact duplicate graph.regularize(); EXPECT_TRUE(graph.isRegularized()); auto remaining = extract_labels(graph); // Expect there to be only 1 edge after regularization. ASSERT_EQ(remaining.size(), 1); EXPECT_EQ(remaining[0].merge_count, 1); // expect one merge, EXPECT_EQ(remaining[0].reversal_count, 0); // no reversals, EXPECT_EQ(remaining[0].detachment_count, 0); // no detachments. // Test removal of imperfect overlaps within numerical precision TestGraph fuzzy{1e-3}; fuzzy.insertEdge(PTH(d)); fuzzy.insertEdge(PTH(near_d)); fuzzy.regularize(); EXPECT_TRUE(fuzzy.isRegularized()); auto fuzmaining = extract_labels(fuzzy); ASSERT_EQ(fuzmaining.size(), 1); EXPECT_EQ(fuzmaining[0].merge_count, 1); // expect one merge, EXPECT_EQ(fuzmaining[0].reversal_count, 0); // no reversals, EXPECT_EQ(fuzmaining[0].detachment_count, 0); // no detachments. // Test overlap of edges with oppositie orientations. TestGraph twoway; twoway.insertEdge(PTH(d)); twoway.insertEdge(REV(d)); twoway.regularize(); EXPECT_TRUE(twoway.isRegularized()); auto left = extract_labels(twoway); ASSERT_EQ(left.size(), 1); EXPECT_EQ(left[0].merge_count, 1); // expect one merge, EXPECT_TRUE(left[0].reversal_count == 0 || left[0].reversal_count == 1); // 0 or 1 reversals EXPECT_EQ(left[0].detachment_count, 0); // no detachments. } /** Regularization of a shorter edge overlapping a longer one. */ TEST(PlanarGraphTest, MergePartial) { TestGraph graph; auto longer = graph.insertEdge(PTH("M 0, 0 L 10, 10")); auto shorter = graph.insertEdge(PTH("M 0, 0 L 6, 6")); EXPECT_EQ(graph.numVertices(), 3); graph.regularize(); EXPECT_EQ(graph.numVertices(), 3); EXPECT_TRUE(graph.isRegularized()); auto labels = extract_labels(graph); ASSERT_EQ(labels.size(), 2); EXPECT_EQ(labels[longer].merge_count, 0); EXPECT_EQ(labels[longer].reversal_count, 0); EXPECT_EQ(labels[longer].detachment_count, 0); EXPECT_EQ(labels[shorter].merge_count, 1); EXPECT_EQ(labels[shorter].reversal_count, 0); EXPECT_EQ(labels[shorter].detachment_count, 0); // Now the same thing but with edges of opposite orientations. TestGraph graphopp; longer = graphopp.insertEdge(PTH("M 0, 0 L 10, 0")); shorter = graphopp.insertEdge(PTH("M 10, 0 L 5, 0")); EXPECT_EQ(graphopp.numVertices(), 3); graphopp.regularize(); EXPECT_EQ(graphopp.numVertices(), 3); EXPECT_TRUE(graphopp.isRegularized()); labels = extract_labels(graphopp); ASSERT_EQ(labels.size(), 2); EXPECT_EQ(labels[longer].merge_count, 0); EXPECT_EQ(labels[longer].reversal_count, 0); EXPECT_EQ(labels[longer].detachment_count, 0); EXPECT_EQ(labels[shorter].merge_count, 1); EXPECT_EQ(labels[shorter].reversal_count, 0); EXPECT_EQ(labels[shorter].detachment_count, 0); } /** Regularization of a Y-split. */ TEST(PlanarGraphTest, MergeY) { TestGraph graph; auto left = graph.insertEdge(PTH("M 1 0 V 1 L 0, 2")); auto right = graph.insertEdge(PTH("M 1,0 V 1 L 2, 2")); EXPECT_EQ(graph.numVertices(), 3); graph.regularize(); EXPECT_EQ(graph.numVertices(), 4); auto edges = graph.getEdges(); EXPECT_EQ(edges.size(), 3); EXPECT_TRUE(are_near(edges[right].start->point(), Point(1, 1))); } /** Test reversal of a wrongly oriented teardrop */ TEST(PlanarGraphTest, Teardrop) { TestGraph graph; auto loop = graph.insertEdge(PTH("M 1,0 A 1,1, 0,0,1 0,1 L 2,2 V 1 H 1 V 0")); // Insert a few unrelated edges auto before = graph.insertEdge(PTH("M 1,0 H 10")); auto after = graph.insertEdge(PTH("M 1,0 H -10")); EXPECT_EQ(graph.numVertices(), 3); graph.regularize(); EXPECT_EQ(graph.numVertices(), 3); auto [start_vertex, start_incidence] = graph.getIncidence(loop, TestGraph::Incidence::START); auto [end_vertex, end_incidence] = graph.getIncidence(loop, TestGraph::Incidence::END); EXPECT_EQ(start_vertex, end_vertex); ASSERT_NE(start_vertex, nullptr); // Check that the incidences have been swapped EXPECT_EQ(start_vertex->cyclicNextIncidence(end_incidence), start_incidence); EXPECT_EQ(start_vertex->cyclicPrevIncidence(start_incidence), end_incidence); auto [b, before_incidence] = graph.getIncidence(before, TestGraph::Incidence::START); EXPECT_EQ(start_vertex->cyclicNextIncidence(before_incidence), end_incidence); auto [a, after_incidence] = graph.getIncidence(after, TestGraph::Incidence::START); EXPECT_EQ(start_vertex->cyclicPrevIncidence(after_incidence), start_incidence); } /** Test the regularization of a lasso-shaped path. */ TEST(PlanarGraphTest, ReglueLasso) { TestGraph graph; // Insert a lasso-shaped path (a teardrop with initial self-overlap). auto original_lasso = graph.insertEdge(PTH("M 0,0 V 1 C 0,2 1,3 1,4 " "A 1,1 0,1,1 -1,4 C -1,3 0,2 0,1 V 0")); EXPECT_EQ(graph.numVertices(), 1); graph.regularize(); EXPECT_EQ(graph.numVertices(), 2); EXPECT_EQ(graph.numEdges(false), 2); EXPECT_TRUE(graph.getEdge(original_lasso).detached); auto const &edges = graph.getEdges(); // Find the edge from origin and ensure it got glued. auto from_origin = std::find_if(edges.begin(), edges.end(), [](auto const &edge) -> bool { return !edge.detached && (edge.start->point() == Point(0, 0) || edge.end->point() == Point(0, 0)); }); ASSERT_NE(from_origin, edges.end()); ASSERT_EQ(from_origin->label.merge_count, 1); } /** Test the removal of a collapsed loop. */ TEST(PlanarGraphTest, RemoveCollapsed) { TestGraph graph; // Insert a collapsed loop auto collapsed = graph.insertEdge(PTH("M 0,0 L 1,1 L 0,0")); ASSERT_EQ(graph.numEdges(), 1); graph.regularize(); ASSERT_EQ(graph.numEdges(false), 0); ASSERT_TRUE(graph.getEdge(collapsed).detached); TestGraph fuzzy(1e-3); // Insert a nearly collapsed loop auto nearly = fuzzy.insertEdge(PTH("M 0,0 H 2 V 0.001 L 1,0 H 0")); ASSERT_EQ(fuzzy.numEdges(), 1); fuzzy.regularize(); ASSERT_EQ(fuzzy.numEdges(false), 0); ASSERT_TRUE(fuzzy.getEdge(nearly).detached); } /** Test regularization of straddling runs. */ TEST(PlanarGraphTest, RemoveWisp) { TestGraph graph; // Insert a horizontal segment at the origin towards positive X: graph.insertEdge(PTH("M 0 0 H 1")); // Insert a path with a collapsed Bézier curve towards negative X: graph.insertEdge(PTH("M 0 0 C -1 0 -1 0 0 0")); graph.regularize(); // Ensure that the folded Bézier is removed (and no segfault occurs). EXPECT_EQ(graph.numEdges(false), 1); } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :