1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/**
* \file
* \brief Calculation of binomial cefficients
*//*
* Copyright 2006 Nathan Hurst <njh@mail.csse.monash.edu.au>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_CHOOSE_H
#define LIB2GEOM_SEEN_CHOOSE_H
#include <vector>
namespace Geom {
/**
* @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n + 1, k).
*/
template <typename T>
constexpr void binomial_increment_n(T &b, int n, int k)
{
b = b * (n + 1) / (n + 1 - k);
}
/**
* @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n - 1, k).
*/
template <typename T>
constexpr void binomial_decrement_n(T &b, int n, int k)
{
b = b * (n - k) / n;
}
/**
* @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n, k + 1).
*/
template <typename T>
constexpr void binomial_increment_k(T &b, int n, int k)
{
b = b * (n - k) / (k + 1);
}
/**
* @brief Given a multiple of binomial(n, k), modify it to the same multiple of binomial(n, k - 1).
*/
template <typename T>
constexpr void binomial_decrement_k(T &b, int n, int k)
{
b = b * k / (n + 1 - k);
}
/**
* @brief Calculate the (n, k)th binomial coefficient.
*/
template <typename T>
constexpr T choose(unsigned n, unsigned k)
{
if (k > n) {
return 0;
}
T b = 1;
int max = std::min(k, n - k);
for (int i = 0; i < max; i++) {
binomial_increment_k(b, n, i);
}
return b;
}
/**
* @brief Class for calculating and accessing a row of Pascal's triangle.
*/
template <typename ValueType>
class BinomialCoefficient
{
public:
using value_type = ValueType;
using container_type = std::vector<value_type>;
BinomialCoefficient(unsigned int _n)
: n(_n)
{
coefficients.reserve(n / 2 + 1);
coefficients.emplace_back(1);
value_type b = 1;
for (int i = 0; i < n / 2; i++) {
binomial_increment_k(b, n, i);
coefficients.emplace_back(b);
}
}
unsigned int size() const
{
return degree() + 1;
}
unsigned int degree() const
{
return n;
}
value_type operator[](unsigned int k) const
{
return coefficients[std::min(k, n - k)];
}
private:
int const n;
container_type coefficients;
};
} // namespace Geom
#endif // LIB2GEOM_SEEN_CHOOSE_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|