1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
/**
* \file
* \brief Lifts one dimensional objects into 2D
*//*
* Authors:
* Michael Sloan <mgsloan@gmail.com>
* Krzysztof Kosiński <tweenk.pl@gmail.com>
*
* Copyright 2007-2015 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, output to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_D2_H
#define LIB2GEOM_SEEN_D2_H
#include <iterator>
#include <boost/concept/assert.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <2geom/point.h>
#include <2geom/interval.h>
#include <2geom/affine.h>
#include <2geom/rect.h>
#include <2geom/concepts.h>
namespace Geom {
/**
* @brief Adaptor that creates 2D functions from 1D ones.
* @ingroup Fragments
*/
template <typename T>
class D2
{
private:
T f[2];
public:
typedef T D1Value;
typedef T &D1Reference;
typedef T const &D1ConstReference;
D2() {f[X] = f[Y] = T();}
explicit D2(Point const &a) {
f[X] = T(a[X]); f[Y] = T(a[Y]);
}
D2(T const &a, T const &b) {
f[X] = a;
f[Y] = b;
}
template <typename Iter>
D2(Iter first, Iter last) {
typedef typename std::iterator_traits<Iter>::value_type V;
typedef typename boost::transform_iterator<GetAxis<X,V>, Iter> XIter;
typedef typename boost::transform_iterator<GetAxis<Y,V>, Iter> YIter;
XIter xfirst(first, GetAxis<X,V>()), xlast(last, GetAxis<X,V>());
f[X] = T(xfirst, xlast);
YIter yfirst(first, GetAxis<Y,V>()), ylast(last, GetAxis<Y,V>());
f[Y] = T(yfirst, ylast);
}
D2(std::vector<Point> const &vec) {
typedef Point V;
typedef std::vector<Point>::const_iterator Iter;
typedef boost::transform_iterator<GetAxis<X,V>, Iter> XIter;
typedef boost::transform_iterator<GetAxis<Y,V>, Iter> YIter;
XIter xfirst(vec.begin(), GetAxis<X,V>()), xlast(vec.end(), GetAxis<X,V>());
f[X] = T(xfirst, xlast);
YIter yfirst(vec.begin(), GetAxis<Y,V>()), ylast(vec.end(), GetAxis<Y,V>());
f[Y] = T(yfirst, ylast);
}
//TODO: ask MenTaLguY about operator= as seen in Point
T& operator[](unsigned i) { return f[i]; }
T const & operator[](unsigned i) const { return f[i]; }
Point point(unsigned i) const {
Point ret(f[X][i], f[Y][i]);
return ret;
}
//IMPL: FragmentConcept
typedef Point output_type;
bool isZero(double eps=EPSILON) const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return f[X].isZero(eps) && f[Y].isZero(eps);
}
bool isConstant(double eps=EPSILON) const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return f[X].isConstant(eps) && f[Y].isConstant(eps);
}
bool isFinite() const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return f[X].isFinite() && f[Y].isFinite();
}
Point at0() const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return Point(f[X].at0(), f[Y].at0());
}
Point at1() const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return Point(f[X].at1(), f[Y].at1());
}
Point pointAt(double t) const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return (*this)(t);
}
Point valueAt(double t) const {
// TODO: remove this alias
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return (*this)(t);
}
std::vector<Point > valueAndDerivatives(double t, unsigned n) const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
std::vector<Coord> x = f[X].valueAndDerivatives(t, n),
y = f[Y].valueAndDerivatives(t, n); // always returns a vector of size n+1
std::vector<Point> res(n+1);
for(unsigned i = 0; i <= n; i++) {
res[i] = Point(x[i], y[i]);
}
return res;
}
D2<SBasis> toSBasis() const {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return D2<SBasis>(f[X].toSBasis(), f[Y].toSBasis());
}
Point operator()(double t) const;
Point operator()(double x, double y) const;
};
template <typename T>
inline D2<T> reverse(const D2<T> &a) {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return D2<T>(reverse(a[X]), reverse(a[Y]));
}
template <typename T>
inline D2<T> portion(const D2<T> &a, Coord f, Coord t) {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return D2<T>(portion(a[X], f, t), portion(a[Y], f, t));
}
template <typename T>
inline D2<T> portion(const D2<T> &a, Interval i) {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return D2<T>(portion(a[X], i), portion(a[Y], i));
}
//IMPL: EqualityComparableConcept
template <typename T>
inline bool
operator==(D2<T> const &a, D2<T> const &b) {
BOOST_CONCEPT_ASSERT((EqualityComparableConcept<T>));
return a[0]==b[0] && a[1]==b[1];
}
template <typename T>
inline bool
operator!=(D2<T> const &a, D2<T> const &b) {
BOOST_CONCEPT_ASSERT((EqualityComparableConcept<T>));
return a[0]!=b[0] || a[1]!=b[1];
}
//IMPL: NearConcept
template <typename T>
inline bool
are_near(D2<T> const &a, D2<T> const &b, double tol) {
BOOST_CONCEPT_ASSERT((NearConcept<T>));
return are_near(a[0], b[0], tol) && are_near(a[1], b[1], tol);
}
//IMPL: AddableConcept
template <typename T>
inline D2<T>
operator+(D2<T> const &a, D2<T> const &b) {
BOOST_CONCEPT_ASSERT((AddableConcept<T>));
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = a[i] + b[i];
return r;
}
template <typename T>
inline D2<T>
operator-(D2<T> const &a, D2<T> const &b) {
BOOST_CONCEPT_ASSERT((AddableConcept<T>));
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = a[i] - b[i];
return r;
}
template <typename T>
inline D2<T>
operator+=(D2<T> &a, D2<T> const &b) {
BOOST_CONCEPT_ASSERT((AddableConcept<T>));
for(unsigned i = 0; i < 2; i++)
a[i] += b[i];
return a;
}
template <typename T>
inline D2<T>
operator-=(D2<T> &a, D2<T> const & b) {
BOOST_CONCEPT_ASSERT((AddableConcept<T>));
for(unsigned i = 0; i < 2; i++)
a[i] -= b[i];
return a;
}
//IMPL: ScalableConcept
template <typename T>
inline D2<T>
operator-(D2<T> const & a) {
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = -a[i];
return r;
}
template <typename T>
inline D2<T>
operator*(D2<T> const & a, Point const & b) {
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = a[i] * b[i];
return r;
}
template <typename T>
inline D2<T>
operator/(D2<T> const & a, Point const & b) {
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
//TODO: b==0?
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = a[i] / b[i];
return r;
}
template <typename T>
inline D2<T>
operator*=(D2<T> &a, Point const & b) {
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
for(unsigned i = 0; i < 2; i++)
a[i] *= b[i];
return a;
}
template <typename T>
inline D2<T>
operator/=(D2<T> &a, Point const & b) {
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
//TODO: b==0?
for(unsigned i = 0; i < 2; i++)
a[i] /= b[i];
return a;
}
template <typename T>
inline D2<T> operator*(D2<T> const & a, double b) { return D2<T>(a[0]*b, a[1]*b); }
template <typename T>
inline D2<T> operator*=(D2<T> & a, double b) { a[0] *= b; a[1] *= b; return a; }
template <typename T>
inline D2<T> operator/(D2<T> const & a, double b) { return D2<T>(a[0]/b, a[1]/b); }
template <typename T>
inline D2<T> operator/=(D2<T> & a, double b) { a[0] /= b; a[1] /= b; return a; }
template<typename T>
D2<T> operator*(D2<T> const &v, Affine const &m) {
BOOST_CONCEPT_ASSERT((AddableConcept<T>));
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
D2<T> ret;
for(unsigned i = 0; i < 2; i++)
ret[i] = v[X] * m[i] + v[Y] * m[i + 2] + m[i + 4];
return ret;
}
//IMPL: MultiplicableConcept
template <typename T>
inline D2<T>
operator*(D2<T> const & a, T const & b) {
BOOST_CONCEPT_ASSERT((MultiplicableConcept<T>));
D2<T> ret;
for(unsigned i = 0; i < 2; i++)
ret[i] = a[i] * b;
return ret;
}
//IMPL:
//IMPL: OffsetableConcept
template <typename T>
inline D2<T>
operator+(D2<T> const & a, Point b) {
BOOST_CONCEPT_ASSERT((OffsetableConcept<T>));
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = a[i] + b[i];
return r;
}
template <typename T>
inline D2<T>
operator-(D2<T> const & a, Point b) {
BOOST_CONCEPT_ASSERT((OffsetableConcept<T>));
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = a[i] - b[i];
return r;
}
template <typename T>
inline D2<T>
operator+=(D2<T> & a, Point b) {
BOOST_CONCEPT_ASSERT((OffsetableConcept<T>));
for(unsigned i = 0; i < 2; i++)
a[i] += b[i];
return a;
}
template <typename T>
inline D2<T>
operator-=(D2<T> & a, Point b) {
BOOST_CONCEPT_ASSERT((OffsetableConcept<T>));
for(unsigned i = 0; i < 2; i++)
a[i] -= b[i];
return a;
}
template <typename T>
inline T
dot(D2<T> const & a, D2<T> const & b) {
BOOST_CONCEPT_ASSERT((AddableConcept<T>));
BOOST_CONCEPT_ASSERT((MultiplicableConcept<T>));
T r;
for(unsigned i = 0; i < 2; i++)
r += a[i] * b[i];
return r;
}
/** @brief Calculates the 'dot product' or 'inner product' of \c a and \c b
* @return \f$a \bullet b = a_X b_X + a_Y b_Y\f$.
* @relates D2 */
template <typename T>
inline T
dot(D2<T> const & a, Point const & b) {
BOOST_CONCEPT_ASSERT((AddableConcept<T>));
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
T r;
for(unsigned i = 0; i < 2; i++) {
r += a[i] * b[i];
}
return r;
}
/** @brief Calculates the 'cross product' or 'outer product' of \c a and \c b
* @return \f$a \times b = a_Y b_X - a_X b_Y\f$.
* @relates D2 */
template <typename T>
inline T
cross(D2<T> const & a, D2<T> const & b) {
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
BOOST_CONCEPT_ASSERT((MultiplicableConcept<T>));
return a[1] * b[0] - a[0] * b[1];
}
//equivalent to cw/ccw, for use in situations where rotation direction doesn't matter.
template <typename T>
inline D2<T>
rot90(D2<T> const & a) {
BOOST_CONCEPT_ASSERT((ScalableConcept<T>));
return D2<T>(-a[Y], a[X]);
}
//TODO: concepterize the following functions
template <typename T>
inline D2<T>
compose(D2<T> const & a, T const & b) {
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = compose(a[i],b);
return r;
}
template <typename T>
inline D2<T>
compose_each(D2<T> const & a, D2<T> const & b) {
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = compose(a[i],b[i]);
return r;
}
template <typename T>
inline D2<T>
compose_each(T const & a, D2<T> const & b) {
D2<T> r;
for(unsigned i = 0; i < 2; i++)
r[i] = compose(a,b[i]);
return r;
}
template<typename T>
inline Point
D2<T>::operator()(double t) const {
Point p;
for(unsigned i = 0; i < 2; i++)
p[i] = (*this)[i](t);
return p;
}
//TODO: we might want to have this take a Point as the parameter.
template<typename T>
inline Point
D2<T>::operator()(double x, double y) const {
Point p;
for(unsigned i = 0; i < 2; i++)
p[i] = (*this)[i](x, y);
return p;
}
template<typename T>
D2<T> derivative(D2<T> const & a) {
return D2<T>(derivative(a[X]), derivative(a[Y]));
}
template<typename T>
D2<T> integral(D2<T> const & a) {
return D2<T>(integral(a[X]), integral(a[Y]));
}
/** A function to print out the Point. It just prints out the coords
on the given output stream */
template <typename T>
inline std::ostream &operator<< (std::ostream &out_file, const Geom::D2<T> &in_d2) {
out_file << "X: " << in_d2[X] << " Y: " << in_d2[Y];
return out_file;
}
//Some D2 Fragment implementation which requires rect:
template <typename T>
OptRect bounds_fast(const D2<T> &a) {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return OptRect(bounds_fast(a[X]), bounds_fast(a[Y]));
}
template <typename T>
OptRect bounds_exact(const D2<T> &a) {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return OptRect(bounds_exact(a[X]), bounds_exact(a[Y]));
}
template <typename T>
OptRect bounds_local(const D2<T> &a, const OptInterval &t) {
BOOST_CONCEPT_ASSERT((FragmentConcept<T>));
return OptRect(bounds_local(a[X], t), bounds_local(a[Y], t));
}
// SBasis-specific declarations
inline D2<SBasis> compose(D2<SBasis> const & a, SBasis const & b) {
return D2<SBasis>(compose(a[X], b), compose(a[Y], b));
}
SBasis L2(D2<SBasis> const & a, unsigned k);
double L2(D2<double> const & a);
D2<SBasis> multiply(Linear const & a, D2<SBasis> const & b);
inline D2<SBasis> operator*(Linear const & a, D2<SBasis> const & b) { return multiply(a, b); }
D2<SBasis> multiply(SBasis const & a, D2<SBasis> const & b);
inline D2<SBasis> operator*(SBasis const & a, D2<SBasis> const & b) { return multiply(a, b); }
D2<SBasis> truncate(D2<SBasis> const & a, unsigned terms);
unsigned sbasis_size(D2<SBasis> const & a);
double tail_error(D2<SBasis> const & a, unsigned tail);
//Piecewise<D2<SBasis> > specific declarations
Piecewise<D2<SBasis> > sectionize(D2<Piecewise<SBasis> > const &a);
D2<Piecewise<SBasis> > make_cuts_independent(Piecewise<D2<SBasis> > const &a);
Piecewise<D2<SBasis> > rot90(Piecewise<D2<SBasis> > const &a);
Piecewise<SBasis> dot(Piecewise<D2<SBasis> > const &a, Piecewise<D2<SBasis> > const &b);
Piecewise<SBasis> dot(Piecewise<D2<SBasis> > const &a, Point const &b);
Piecewise<SBasis> cross(Piecewise<D2<SBasis> > const &a, Piecewise<D2<SBasis> > const &b);
Piecewise<D2<SBasis> > operator*(Piecewise<D2<SBasis> > const &a, Affine const &m);
Piecewise<D2<SBasis> > force_continuity(Piecewise<D2<SBasis> > const &f, double tol=0, bool closed=false);
std::vector<Piecewise<D2<SBasis> > > fuse_nearby_ends(std::vector<Piecewise<D2<SBasis> > > const &f, double tol=0);
std::vector<Geom::Piecewise<Geom::D2<Geom::SBasis> > > split_at_discontinuities (Geom::Piecewise<Geom::D2<Geom::SBasis> > const & pwsbin, double tol = .0001);
Point unitTangentAt(D2<SBasis> const & a, Coord t, unsigned n = 3);
//bounds specializations with order
inline OptRect bounds_fast(D2<SBasis> const & s, unsigned order=0) {
OptRect retval;
OptInterval xint = bounds_fast(s[X], order);
if (xint) {
OptInterval yint = bounds_fast(s[Y], order);
if (yint) {
retval = Rect(*xint, *yint);
}
}
return retval;
}
inline OptRect bounds_local(D2<SBasis> const & s, OptInterval i, unsigned order=0) {
OptRect retval;
OptInterval xint = bounds_local(s[X], i, order);
OptInterval yint = bounds_local(s[Y], i, order);
if (xint && yint) {
retval = Rect(*xint, *yint);
}
return retval;
}
std::vector<Interval> level_set( D2<SBasis> const &f, Rect region);
std::vector<Interval> level_set( D2<SBasis> const &f, Point p, double tol);
std::vector<std::vector<Interval> > level_sets( D2<SBasis> const &f, std::vector<Rect> regions);
std::vector<std::vector<Interval> > level_sets( D2<SBasis> const &f, std::vector<Point> pts, double tol);
} // end namespace Geom
#endif
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|