summaryrefslogtreecommitdiffstats
path: root/include/2geom/elliptical-arc.h
blob: 567e207aa1bfb0de53d52350b606eb2ab1cde020 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/**
 * \file
 * \brief  Elliptical arc curve
 *
 *//*
 * Authors:
 *    MenTaLguY <mental@rydia.net>
 *    Marco Cecchetti <mrcekets at gmail.com>
 *    Krzysztof Kosiński <tweenk.pl@gmail.com>
 * 
 * Copyright 2007-2009 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

#ifndef LIB2GEOM_SEEN_ELLIPTICAL_ARC_H
#define LIB2GEOM_SEEN_ELLIPTICAL_ARC_H

#include <algorithm>
#include <2geom/affine.h>
#include <2geom/angle.h>
#include <2geom/bezier-curve.h>
#include <2geom/curve.h>
#include <2geom/ellipse.h>
#include <2geom/sbasis-curve.h>  // for non-native methods
#include <2geom/utils.h>

namespace Geom 
{

class EllipticalArc : public Curve
{
public:
    /** @brief Creates an arc with all variables set to zero. */
    EllipticalArc()
        : _initial_point(0,0)
        , _final_point(0,0)
        , _large_arc(false)
    {}
    /** @brief Create a new elliptical arc.
     * @param ip Initial point of the arc
     * @param r Rays of the ellipse as a point
     * @param rot Angle of rotation of the X axis of the ellipse in radians
     * @param large If true, the large arc is chosen (always >= 180 degrees), otherwise
     *              the smaller arc is chosen
     * @param sweep If true, the clockwise arc is chosen, otherwise the counter-clockwise
     *              arc is chosen
     * @param fp Final point of the arc */
    EllipticalArc( Point const &ip, Point const &r,
                   Coord rot_angle, bool large_arc, bool sweep,
                   Point const &fp
                 )
        : _initial_point(ip)
        , _final_point(fp)
        , _ellipse(0, 0, r[X], r[Y], rot_angle)
        , _angles(0, 0, sweep)
        , _large_arc(large_arc)
    {
        _updateCenterAndAngles();
    }

    /// Create a new elliptical arc, giving the ellipse's rays as separate coordinates.
    EllipticalArc( Point const &ip, Coord rx, Coord ry,
                   Coord rot_angle, bool large_arc, bool sweep,
                   Point const &fp
                 )
        : _initial_point(ip)
        , _final_point(fp)
        , _ellipse(0, 0, rx, ry, rot_angle)
        , _angles(0, 0, sweep)
        , _large_arc(large_arc)
    {
        _updateCenterAndAngles();
    }

    /// @name Retrieve basic information
    /// @{

    /** @brief Get a coordinate of the elliptical arc's center.
     * @param d The dimension to retrieve
     * @return The selected coordinate of the center */
    Coord center(Dim2 d) const { return _ellipse.center(d); }

    /** @brief Get the arc's center
     * @return The arc's center, situated on the intersection of the ellipse's rays */
    Point center() const { return _ellipse.center(); }

    /** @brief Get one of the ellipse's rays
     * @param d Dimension to retrieve
     * @return The selected ray of the ellipse */
    Coord ray(Dim2 d) const { return _ellipse.ray(d); }

    /** @brief Get both rays as a point
     * @return Point with X equal to the X ray and Y to Y ray */
    Point rays() const { return _ellipse.rays(); }

    /** @brief Get the defining ellipse's rotation
     * @return Angle between the +X ray of the ellipse and the +X axis */
    Angle rotationAngle() const {
        return _ellipse.rotationAngle();
    }

    /** @brief Whether the arc is larger than half an ellipse.
     * @return True if the arc is larger than \f$\pi\f$, false otherwise */
    bool largeArc() const { return _large_arc; }

    /** @brief Whether the arc turns clockwise
     * @return True if the arc makes a clockwise turn when going from initial to final
     *         point, false otherwise */
    bool sweep() const { return _angles.sweep(); }

    Angle initialAngle() const { return _angles.initialAngle(); }
    Angle finalAngle() const { return _angles.finalAngle(); }
    /// @}

    /// @name Modify parameters
    /// @{

    /// Change all of the arc's parameters.
    void set( Point const &ip, double rx, double ry,
              double rot_angle, bool large_arc, bool sweep,
              Point const &fp
            )
    {
        _initial_point = ip;
        _final_point = fp;
        _ellipse.setRays(rx, ry);
        _ellipse.setRotationAngle(rot_angle);
        _angles.setSweep(sweep);
        _large_arc = large_arc;
        _updateCenterAndAngles();
    }

    /// Change all of the arc's parameters.
    void set( Point const &ip, Point const &r,
              Angle rot_angle, bool large_arc, bool sweep,
              Point const &fp
            )
    {
        _initial_point = ip;
        _final_point = fp;
        _ellipse.setRays(r);
        _ellipse.setRotationAngle(rot_angle);
        _angles.setSweep(sweep);
        _large_arc = large_arc;
        _updateCenterAndAngles();
    }

    /** @brief Change the initial and final point in one operation.
     * This method exists because modifying any of the endpoints causes rather costly
     * recalculations of the center and extreme angles.
     * @param ip New initial point
     * @param fp New final point */
    void setEndpoints(Point const &ip, Point const &fp) {
        _initial_point = ip;
        _final_point = fp;
        _updateCenterAndAngles();
    }
    /// @}

    /// @name Evaluate the arc as a function
    /// @{
    /** Check whether the arc contains the given angle
     * @param t The angle to check
     * @return True if the arc contains the angle, false otherwise */
    bool containsAngle(Angle angle) const { return _angles.contains(angle); }

    /** @brief Evaluate the arc at the specified angular coordinate
     * @param t Angle
     * @return Point corresponding to the given angle */
    Point pointAtAngle(Coord t) const;

    /** @brief Evaluate one of the arc's coordinates at the specified angle
     * @param t Angle
     * @param d The dimension to retrieve
     * @return Selected coordinate of the arc at the specified angle */
    Coord valueAtAngle(Coord t, Dim2 d) const;

    /// Compute the curve time value corresponding to the given angular value.
    Coord timeAtAngle(Angle a) const { return _angles.timeAtAngle(a); }

    /// Compute the angular domain value corresponding to the given time value.
    Angle angleAt(Coord t) const { return _angles.angleAt(t); }

    /** @brief Compute the amount by which the angle parameter changes going from start to end.
     * This has range \f$(-2\pi, 2\pi)\f$ and thus cannot be represented as instance
     * of the class Angle. Add this to the initial angle to obtain the final angle. */
    Coord sweepAngle() const { return _angles.sweepAngle(); }

    /** @brief Get the elliptical angle spanned by the arc.
     * This is basically the absolute value of sweepAngle(). */
    Coord angularExtent() const { return _angles.extent(); }

    /// Get the angular interval of the arc.
    AngleInterval angularInterval() const { return _angles; }

    /// Evaluate the arc in the curve domain, i.e. \f$[0, 1]\f$.
    Point pointAt(Coord t) const override;

    /// Evaluate a single coordinate on the arc in the curve domain.
    Coord valueAt(Coord t, Dim2 d) const override;

    /** @brief Compute a transform that maps the unit circle to the arc's ellipse.
     * Each ellipse can be interpreted as a translated, scaled and rotate unit circle.
     * This function returns the transform that maps the unit circle to the arc's ellipse.
     * @return Transform from unit circle to the arc's ellipse */
    Affine unitCircleTransform() const {
        Affine result = _ellipse.unitCircleTransform();
        return result;
    }

    /** @brief Compute a transform that maps the arc's ellipse to the unit circle. */
    Affine inverseUnitCircleTransform() const {
        Affine result = _ellipse.inverseUnitCircleTransform();
        return result;
    }
    /// @}

    /// @name Deal with degenerate ellipses.
    /// @{
    /** @brief Check whether both rays are nonzero.
     * If they are not, the arc is represented as a line segment instead. */
    bool isChord() const {
        return ray(X) == 0 || ray(Y) == 0;
    }

    /** @brief Get the line segment connecting the arc's endpoints.
     * @return A linear segment with initial and final point corresponding to those of the arc. */
    LineSegment chord() const { return LineSegment(_initial_point, _final_point); }
    /// @}

    // implementation of overloads goes here
    Point initialPoint() const override { return _initial_point; }
    Point finalPoint() const override { return _final_point; }
    Curve* duplicate() const override { return new EllipticalArc(*this); }
    void setInitial(Point const &p) override {
        _initial_point = p;
        _updateCenterAndAngles();
    }
    void setFinal(Point const &p) override {
        _final_point = p;
        _updateCenterAndAngles();
    }
    bool isDegenerate() const override {
        return _initial_point == _final_point;
    }
    bool isLineSegment() const override { return isChord(); }
    Rect boundsFast() const override {
        return boundsExact();
    }
    Rect boundsExact() const override;
    void expandToTransformed(Rect &bbox, Affine const &transform) const override;
    // TODO: native implementation of the following methods
    OptRect boundsLocal(OptInterval const &i, unsigned int deg) const override {
        return SBasisCurve(toSBasis()).boundsLocal(i, deg);
    }
    std::vector<double> roots(double v, Dim2 d) const override;
#ifdef HAVE_GSL
    std::vector<double> allNearestTimes( Point const& p, double from = 0, double to = 1 ) const override;
    double nearestTime( Point const& p, double from = 0, double to = 1 ) const override {
        if ( are_near(ray(X), ray(Y)) && are_near(center(), p) ) {
            return from;
        }
        return allNearestTimes(p, from, to).front();
    }
#endif
    std::vector<CurveIntersection> intersect(Curve const &other, Coord eps=EPSILON) const override;
    int degreesOfFreedom() const override { return 7; }
    Curve *derivative() const override;

    using Curve::operator*=;
    void operator*=(Translate const &tr) override;
    void operator*=(Scale const &s) override;
    void operator*=(Rotate const &r) override;
    void operator*=(Zoom const &z) override;
    void operator*=(Affine const &m) override;

    std::vector<Point> pointAndDerivatives(Coord t, unsigned int n) const override;
    D2<SBasis> toSBasis() const override;
    Curve *portion(double f, double t) const override;
    Curve *reverse() const override;
    bool operator==(Curve const &c) const override;
    bool isNear(Curve const &other, Coord precision) const override;
    void feed(PathSink &sink, bool moveto_initial) const override;
    int winding(Point const &p) const override;

private:
    void _updateCenterAndAngles();
    std::vector<ShapeIntersection> _filterIntersections(std::vector<ShapeIntersection> &&xs, bool is_first) const;
    bool _validateIntersection(ShapeIntersection &xing, bool is_first) const;
    std::vector<ShapeIntersection> _intersectSameEllipse(EllipticalArc const *other) const;

    Point _initial_point, _final_point;
    Ellipse _ellipse;
    AngleInterval _angles;
    bool _large_arc;
}; // end class EllipticalArc


// implemented in elliptical-arc-from-sbasis.cpp
/** @brief Fit an elliptical arc to an SBasis fragment.
 * @relates EllipticalArc */
bool arc_from_sbasis(EllipticalArc &ea, D2<SBasis> const &in,
                     double tolerance = EPSILON, unsigned num_samples = 20);

/** @brief Debug output for elliptical arcs.
 * @relates EllipticalArc */
std::ostream &operator<<(std::ostream &out, EllipticalArc const &ea);

} // end namespace Geom

#endif // LIB2GEOM_SEEN_ELLIPTICAL_ARC_H

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :