summaryrefslogtreecommitdiffstats
path: root/include/2geom/generic-rect.h
blob: 4524d43dc1d07eb78f2fd2cf65f0a8d9977ec69b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/**
 * \file
 * \brief Axis-aligned rectangle
 *//*
 * Authors:
 *   Michael Sloan <mgsloan@gmail.com>
 *   Krzysztof Kosiński <tweenk.pl@gmail.com>
 * Copyright 2007-2011 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, output to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * Authors of original rect class:
 *   Lauris Kaplinski <lauris@kaplinski.com>
 *   Nathan Hurst <njh@mail.csse.monash.edu.au>
 *   bulia byak <buliabyak@users.sf.net>
 *   MenTaLguY <mental@rydia.net>
 */

#ifndef LIB2GEOM_SEEN_GENERIC_RECT_H
#define LIB2GEOM_SEEN_GENERIC_RECT_H

#include <limits>
#include <iostream>
#include <optional>
#include <2geom/coord.h>

namespace Geom {

template <typename C>
class GenericOptRect;

/**
 * @brief Axis aligned, non-empty, generic rectangle.
 * @ingroup Primitives
 */
template <typename C>
class GenericRect
    : CoordTraits<C>::RectOps
{
    typedef typename CoordTraits<C>::IntervalType CInterval;
    typedef typename CoordTraits<C>::PointType CPoint;
    typedef typename CoordTraits<C>::RectType CRect;
    typedef typename CoordTraits<C>::OptRectType OptCRect;
protected:
    CInterval f[2];
public:
    typedef CInterval D1Value;
    typedef CInterval &D1Reference;
    typedef CInterval const &D1ConstReference;

    /// @name Create rectangles.
    /// @{
    /** @brief Create a rectangle that contains only the point at (0,0). */
    GenericRect() { f[X] = f[Y] = CInterval(); }
    /** @brief Create a rectangle from X and Y intervals. */
    GenericRect(CInterval const &a, CInterval const &b) {
        f[X] = a;
        f[Y] = b;
    }
    /** @brief Create a rectangle from two points. */
    GenericRect(CPoint const &a, CPoint const &b) {
        f[X] = CInterval(a[X], b[X]);
        f[Y] = CInterval(a[Y], b[Y]);
    }
    /** @brief Create rectangle from coordinates of two points. */
    GenericRect(C x0, C y0, C x1, C y1) {
        f[X] = CInterval(x0, x1);
        f[Y] = CInterval(y0, y1);
    }
    /** @brief Create a rectangle from a range of points.
     * The resulting rectangle will contain all points from the range.
     * The return type of iterators must be convertible to Point.
     * The range must not be empty. For possibly empty ranges, see OptRect.
     * @param start Beginning of the range
     * @param end   End of the range
     * @return Rectangle that contains all points from [start, end). */
    template <typename InputIterator>
    static CRect from_range(InputIterator start, InputIterator end) {
        assert(start != end);
        CPoint p1 = *start++;
        CRect result(p1, p1);
        for (; start != end; ++start) {
            result.expandTo(*start);
        }
        return result;
    }
    /** @brief Create a rectangle from a C-style array of points it should contain. */
    static CRect from_array(CPoint const *c, unsigned n) {
        CRect result = GenericRect<C>::from_range(c, c+n);
        return result;
    }
    /** @brief Create rectangle from origin and dimensions. */
    static CRect from_xywh(C x, C y, C w, C h) {
        CPoint xy(x, y);
        CPoint wh(w, h);
        CRect result(xy, xy + wh);
        return result;
    }
    /** @brief Create rectangle from origin and dimensions. */
    static CRect from_xywh(CPoint const &xy, CPoint const &wh) {
        CRect result(xy, xy + wh);
        return result;
    }
    /// Create infinite rectangle.
    static CRect infinite() {
        CPoint p0(std::numeric_limits<C>::min(), std::numeric_limits<C>::min());
        CPoint p1(std::numeric_limits<C>::max(), std::numeric_limits<C>::max());
        CRect result(p0, p1);
        return result;
    }
    /// @}

    /// @name Inspect dimensions.
    /// @{
    CInterval &operator[](unsigned i)             { return f[i]; }
    CInterval const &operator[](unsigned i) const { return f[i]; }
    CInterval &operator[](Dim2 d)                 { return f[d]; }
    CInterval const &operator[](Dim2 d) const     { return f[d]; }

    /** @brief Get the corner of the rectangle with smallest coordinate values.
     * In 2Geom standard coordinate system, this means upper left. */
    CPoint min() const { CPoint p(f[X].min(), f[Y].min()); return p; }
    /** @brief Get the corner of the rectangle with largest coordinate values.
     * In 2Geom standard coordinate system, this means lower right. */
    CPoint max() const { CPoint p(f[X].max(), f[Y].max()); return p; }
    /** @brief Return the n-th corner of the rectangle.
     * Returns corners in the direction of growing angles, starting from
     * the one given by min(). For the standard coordinate system used
     * in 2Geom (+Y downwards), this means clockwise starting from
     * the upper left. */
    CPoint corner(unsigned i) const {
        switch(i % 4) {
            case 0:  return CPoint(f[X].min(), f[Y].min());
            case 1:  return CPoint(f[X].max(), f[Y].min());
            case 2:  return CPoint(f[X].max(), f[Y].max());
            default: return CPoint(f[X].min(), f[Y].max());
        }
    }
        
    //We should probably remove these - they're coord sys gnostic
    /** @brief Return top coordinate of the rectangle (+Y is downwards). */
    C top() const { return f[Y].min(); }
    /** @brief Return bottom coordinate of the rectangle (+Y is downwards). */
    C bottom() const { return f[Y].max(); }
    /** @brief Return leftmost coordinate of the rectangle (+X is to the right). */
    C left() const { return f[X].min(); }
    /** @brief Return rightmost coordinate of the rectangle (+X is to the right). */
    C right() const { return f[X].max(); }

    /** @brief Get the horizontal extent of the rectangle. */
    C width() const { return f[X].extent(); }
    /** @brief Get the vertical extent of the rectangle. */
    C height() const { return f[Y].extent(); }
    /** @brief Get the ratio of width to height of the rectangle. */
    Coord aspectRatio() const { return Coord(width()) / Coord(height()); }

    /** @brief Get rectangle's width and height as a point.
     * @return Point with X coordinate corresponding to the width and the Y coordinate
     *         corresponding to the height of the rectangle. */
    CPoint dimensions() const { return CPoint(f[X].extent(), f[Y].extent()); }
    /** @brief Get the point in the geometric center of the rectangle. */
    CPoint midpoint() const { return CPoint(f[X].middle(), f[Y].middle()); }

    /** @brief Compute rectangle's area. */
    C area() const { return f[X].extent() * f[Y].extent(); }
    /** @brief Check whether the rectangle has zero area. */
    bool hasZeroArea() const { return f[X].isSingular() || f[Y].isSingular(); }

    /** @brief Get the larger extent (width or height) of the rectangle. */
    C maxExtent() const { return std::max(f[X].extent(), f[Y].extent()); }
    /** @brief Get the smaller extent (width or height) of the rectangle. */
    C minExtent() const { return std::min(f[X].extent(), f[Y].extent()); }

    /** @brief Get rectangle's distance SQUARED away from the given point **/
    C distanceSq(const CPoint pt) const {
        auto v = clamp(pt) - pt;
        return v.x() * v.x() + v.y() * v.y();
    }

    /** @brief Clamp point to the rectangle. */
    CPoint clamp(CPoint const &p) const {
        CPoint result(f[X].clamp(p[X]), f[Y].clamp(p[Y]));
        return result;
    }
    /** @brief Get the nearest point on the edge of the rectangle. */
    CPoint nearestEdgePoint(CPoint const &p) const {
        CPoint result = p;
        if (!contains(p)) {
            result = clamp(p);
        } else {
            C cx = f[X].nearestEnd(p[X]);
            C cy = f[Y].nearestEnd(p[Y]);
            if (std::abs(cx - p[X]) <= std::abs(cy - p[Y])) {
                result[X] = cx;
            } else {
                result[Y] = cy;
            }
        }
        return result;
    }
    /// @}

    /// @name Test other rectangles and points for inclusion.
    /// @{
    /** @brief Check whether the rectangles have any common points. */
    bool intersects(GenericRect<C> const &r) const { 
        return f[X].intersects(r[X]) && f[Y].intersects(r[Y]);
    }
    /** @brief Check whether the rectangle includes all points in the given rectangle. */
    bool contains(GenericRect<C> const &r) const { 
        return f[X].contains(r[X]) && f[Y].contains(r[Y]);
    }

    /** @brief Check whether the rectangles have any common points.
     * Empty rectangles will not intersect with any other rectangle. */
    inline bool intersects(OptCRect const &r) const;
    /** @brief Check whether the rectangle includes all points in the given rectangle.
     * Empty rectangles will be contained in any non-empty rectangle. */
    inline bool contains(OptCRect const &r) const;

    /** @brief Check whether the given point is within the rectangle. */
    bool contains(CPoint const &p) const {
        return f[X].contains(p[X]) && f[Y].contains(p[Y]);
    }
    /// @}

    /// @name Modify the rectangle.
    /// @{
    /** @brief Set the minimum X coordinate of the rectangle. */
    void setLeft(C val) {
        f[X].setMin(val);
    }
    /** @brief Set the maximum X coordinate of the rectangle. */
    void setRight(C val) {
        f[X].setMax(val);
    }
    /** @brief Set the minimum Y coordinate of the rectangle. */
    void setTop(C val) {
        f[Y].setMin(val);
    }
    /** @brief Set the maximum Y coordinate of the rectangle. */
    void setBottom(C val) {
        f[Y].setMax(val);
    }
    /** @brief Set the upper left point of the rectangle. */
    void setMin(CPoint const &p) {
        f[X].setMin(p[X]);
        f[Y].setMin(p[Y]);
    }
    /** @brief Set the lower right point of the rectangle. */
    void setMax(CPoint const &p) {
        f[X].setMax(p[X]);
        f[Y].setMax(p[Y]);
    }
    /** @brief Enlarge the rectangle to contain the given point. */
    void expandTo(CPoint const &p)        { 
        f[X].expandTo(p[X]);  f[Y].expandTo(p[Y]);
    }
    /** @brief Enlarge the rectangle to contain the argument. */
    void unionWith(CRect const &b) { 
        f[X].unionWith(b[X]); f[Y].unionWith(b[Y]);
    }
    /** @brief Enlarge the rectangle to contain the argument.
     * Unioning with an empty rectangle results in no changes. */
    void unionWith(OptCRect const &b);

    /** @brief Expand the rectangle in both directions by the specified amount.
     * Note that this is different from scaling. Negative values will shrink the
     * rectangle. If <code>-amount</code> is larger than
     * half of the width, the X interval will contain only the X coordinate
     * of the midpoint; same for height. */
    void expandBy(C amount) {
        expandBy(amount, amount);
    }
    /** @brief Expand the rectangle in both directions.
     * Note that this is different from scaling. Negative values will shrink the
     * rectangle. If <code>-x</code> is larger than
     * half of the width, the X interval will contain only the X coordinate
     * of the midpoint; same for height. */
    void expandBy(C x, C y) { 
        f[X].expandBy(x);  f[Y].expandBy(y);
    }
    /** @brief Expand the rectangle by the coordinates of the given point.
     * This will expand the width by the X coordinate of the point in both directions
     * and the height by Y coordinate of the point. Negative coordinate values will
     * shrink the rectangle. If <code>-p[X]</code> is larger than half of the width,
     * the X interval will contain only the X coordinate of the midpoint;
     * same for height. */
    void expandBy(CPoint const &p) {
        expandBy(p[X], p[Y]);
    }
    /// @}

    /// @name Operators
    /// @{
    /** @brief Offset the rectangle by a vector. */
    GenericRect<C> &operator+=(CPoint const &p) {
        f[X] += p[X];
        f[Y] += p[Y];
        return *this;
    }
    /** @brief Offset the rectangle by the negation of a vector. */
    GenericRect<C> &operator-=(CPoint const &p) {
        f[X] -= p[X];
        f[Y] -= p[Y];
        return *this;
    }
    /** @brief Union two rectangles. */
    GenericRect<C> &operator|=(CRect const &o) {
        unionWith(o);
        return *this;
    }
    GenericRect<C> &operator|=(OptCRect const &o) {
        unionWith(o);
        return *this;
    }
    /** @brief Test for equality of rectangles. */
    bool operator==(CRect const &o) const { return f[X] == o[X] && f[Y] == o[Y]; }
    /// @}
};

/**
 * @brief Axis-aligned generic rectangle that can be empty.
 * @ingroup Primitives
 */
template <typename C>
class GenericOptRect
    : public std::optional<typename CoordTraits<C>::RectType>
    , boost::equality_comparable< typename CoordTraits<C>::OptRectType
    , boost::equality_comparable< typename CoordTraits<C>::OptRectType, typename CoordTraits<C>::RectType
    , boost::orable< typename CoordTraits<C>::OptRectType
    , boost::andable< typename CoordTraits<C>::OptRectType
    , boost::andable< typename CoordTraits<C>::OptRectType, typename CoordTraits<C>::RectType
      > > > > >
{
    typedef typename CoordTraits<C>::IntervalType CInterval;
    typedef typename CoordTraits<C>::OptIntervalType OptCInterval;
    typedef typename CoordTraits<C>::PointType CPoint;
    typedef typename CoordTraits<C>::RectType CRect;
    typedef typename CoordTraits<C>::OptRectType OptCRect;
    typedef std::optional<CRect> Base;
public:
    typedef CInterval D1Value;
    typedef CInterval &D1Reference;
    typedef CInterval const &D1ConstReference;

    /// @name Create potentially empty rectangles.
    /// @{
    GenericOptRect() : Base() {}
    GenericOptRect(GenericRect<C> const &a) : Base(CRect(a)) {}
    GenericOptRect(CPoint const &a, CPoint const &b) : Base(CRect(a, b)) {}
    GenericOptRect(C x0, C y0, C x1, C y1) : Base(CRect(x0, y0, x1, y1)) {}
    /// Creates an empty OptRect when one of the argument intervals is empty.
    GenericOptRect(OptCInterval const &x_int, OptCInterval const &y_int) {
        if (x_int && y_int) {
            *this = CRect(*x_int, *y_int);
        }
        // else, stay empty.
    }
    
    /** @brief Create a rectangle from a range of points.
     * The resulting rectangle will contain all points from the range.
     * If the range contains no points, the result will be an empty rectangle.
     * The return type of iterators must be convertible to the corresponding
     * point type (Point or IntPoint).
     * @param start Beginning of the range
     * @param end   End of the range
     * @return Rectangle that contains all points from [start, end). */
    template <typename InputIterator>
    static OptCRect from_range(InputIterator start, InputIterator end) {
        OptCRect result;
        for (; start != end; ++start) {
            result.expandTo(*start);
        }
        return result;
    }
    /// @}

    /// @name Check other rectangles and points for inclusion.
    /// @{
    /** @brief Check for emptiness. */
    inline bool empty() const { return !*this; };
    /** @brief Check whether the rectangles have any common points.
     * Empty rectangles will not intersect with any other rectangle. */
    bool intersects(CRect const &r) const { return r.intersects(*this); }
    /** @brief Check whether the rectangle includes all points in the given rectangle.
     * Empty rectangles will be contained in any non-empty rectangle. */
    bool contains(CRect const &r) const { return *this && (*this)->contains(r); }

    /** @brief Check whether the rectangles have any common points.
     * Empty rectangles will not intersect with any other rectangle.
     * Two empty rectangles will not intersect each other. */
    bool intersects(OptCRect const &r) const { return *this && (*this)->intersects(r); }
    /** @brief Check whether the rectangle includes all points in the given rectangle.
     * Empty rectangles will be contained in any non-empty rectangle.
     * An empty rectangle will not contain other empty rectangles. */
    bool contains(OptCRect const &r) const { return *this && (*this)->contains(r); }

    /** @brief Check whether the given point is within the rectangle.
     * An empty rectangle will not contain any points. */
    bool contains(CPoint const &p) const { return *this && (*this)->contains(p); }
    /// @}

    /** @brief Returns an empty optional (testing false) if the rectangle has zero area. */
    OptCRect regularized() const {
        return *this && !(*this)->hasZeroArea() ? *this : OptCRect();
    }

    /// @name Modify the potentially empty rectangle.
    /// @{
    /** @brief Enlarge the rectangle to contain the argument.
     * If this rectangle is empty, after callng this method it will
     * be equal to the argument. */
    void unionWith(CRect const &b) {
        if (*this) {
            (*this)->unionWith(b);
        } else {
            *this = b;
        }
    }
    /** @brief Enlarge the rectangle to contain the argument.
     * Unioning with an empty rectangle results in no changes.
     * If this rectangle is empty, after calling this method it will
     * be equal to the argument. */
    void unionWith(OptCRect const &b) {
        if (b) unionWith(*b);
    }
    /** @brief Leave only the area overlapping with the argument.
     * If the rectangles do not have any points in common, after calling
     * this method the rectangle will be empty. */
    void intersectWith(CRect const &b) {
        if (!*this) return;
        OptCInterval x = (**this)[X] & b[X], y = (**this)[Y] & b[Y];
        if (x && y) {
            *this = CRect(*x, *y);
        } else {
            *(static_cast<Base*>(this)) = std::nullopt;
        }
    }
    /** @brief Leave only the area overlapping with the argument.
     * If the argument is empty or the rectangles do not have any points
     * in common, after calling this method the rectangle will be empty. */
    void intersectWith(OptCRect const &b) {
        if (b) {
            intersectWith(*b);
        } else {
            *(static_cast<Base*>(this)) = std::nullopt;
        }
    }
    /** @brief Create or enlarge the rectangle to contain the given point.
     * If the rectangle is empty, after calling this method it will be non-empty
     * and it will contain only the given point. */
    void expandTo(CPoint const &p) {
        if (*this) {
            (*this)->expandTo(p);
        } else {
            *this = CRect(p, p);
        }
    }
    /// @}
    
    /// @name Operators
    /// @{
    /** @brief Union with @a b */
    GenericOptRect<C> &operator|=(OptCRect const &b) {
        unionWith(b);
        return *this;
    }
    /** @brief Intersect with @a b */
    GenericOptRect<C> &operator&=(CRect const &b) {
        intersectWith(b);
        return *this;
    }
    /** @brief Intersect with @a b */
    GenericOptRect<C> &operator&=(OptCRect const &b) {
        intersectWith(b);
        return *this;
    }
    /** @brief Test for equality.
     * All empty rectangles are equal. */
    bool operator==(OptCRect const &other) const {
        if (!*this != !other) return false;
        return *this ? (**this == *other) : true;
    }
    bool operator==(CRect const &other) const {
        if (!*this) return false;
        return **this == other;
    }
    /// @}
};

template <typename C>
inline void GenericRect<C>::unionWith(OptCRect const &b) { 
    if (b) {
        unionWith(*b);
    }
}
template <typename C>
inline bool GenericRect<C>::intersects(OptCRect const &r) const {
    return r && intersects(*r);
}
template <typename C>
inline bool GenericRect<C>::contains(OptCRect const &r) const {
    return !r || contains(*r);
}

template <typename C>
inline std::ostream &operator<<(std::ostream &out, GenericRect<C> const &r) {
    out << "Rect " << r[X] << " x " << r[Y];
    return out;
}

} // end namespace Geom

#endif // LIB2GEOM_SEEN_RECT_H

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :