1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
/**
* \file
* \brief Simple closed interval class
*//*
* Copyright 2007 Michael Sloan <mgsloan@gmail.com>
*
* Original Rect/Range code by:
* Lauris Kaplinski <lauris@kaplinski.com>
* Nathan Hurst <njh@mail.csse.monash.edu.au>
* bulia byak <buliabyak@users.sf.net>
* MenTaLguY <mental@rydia.net>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, output to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_INTERVAL_H
#define LIB2GEOM_SEEN_INTERVAL_H
#include <boost/none.hpp>
#include <boost/operators.hpp>
#include <2geom/coord.h>
#include <2geom/math-utils.h>
#include <2geom/generic-interval.h>
#include <2geom/int-interval.h>
namespace Geom {
/**
* @brief Range of real numbers that is never empty.
*
* Intervals are closed ranges \f$[a, b]\f$, which means they include their endpoints.
* To use them as open ranges, you can use the interiorContains() methods.
*
* @ingroup Primitives
*/
class Interval
: public GenericInterval<Coord>
{
typedef GenericInterval<Coord> Base;
public:
/// @name Create intervals.
/// @{
/** @brief Create an interval that contains only zero. */
Interval() {}
/** @brief Create an interval that contains a single point. */
explicit Interval(Coord u) : Base(u) {}
/** @brief Create an interval that contains all points between @c u and @c v. */
Interval(Coord u, Coord v) : Base(u,v) {}
/** @brief Convert from integer interval */
Interval(IntInterval const &i) : Base(i.min(), i.max()) {}
Interval(Base const &b) : Base(b) {}
/** @brief Create an interval containing a range of values.
* The resulting interval will contain all values from the given range.
* The return type of iterators must be convertible to Coord. The given range
* must not be empty. For potentially empty ranges, see OptInterval.
* @param start Beginning of the range
* @param end End of the range
* @return Interval that contains all values from [start, end). */
template <typename InputIterator>
static Interval from_range(InputIterator start, InputIterator end) {
Interval result = Base::from_range(start, end);
return result;
}
/** @brief Create an interval from a C-style array of values it should contain. */
static Interval from_array(Coord const *c, unsigned n) {
Interval result = from_range(c, c+n);
return result;
}
/// @}
/// @name Inspect contained values.
/// @{
/// Check whether both endpoints are finite.
bool isFinite() const {
return std::isfinite(min()) && std::isfinite(max());
}
/** @brief Map the interval [0,1] onto this one.
* This method simply performs 1D linear interpolation between endpoints. */
Coord valueAt(Coord t) const {
return lerp(t, min(), max());
}
/** @brief Compute a time value that maps to the given value.
* The supplied value does not need to be in the interval for this method to work. */
Coord timeAt(Coord v) const {
return (v - min()) / extent();
}
/// Find closest time in [0,1] that maps to the given value. */
Coord nearestTime(Coord v) const {
if (v <= min()) return 0;
if (v >= max()) return 1;
return timeAt(v);
}
/// @}
/// @name Test coordinates and other intervals for inclusion.
/// @{
/** @brief Check whether the interior of the interval includes this number.
* Interior means all numbers in the interval except its ends. */
bool interiorContains(Coord val) const { return min() < val && val < max(); }
/** @brief Check whether the interior of the interval includes the given interval.
* Interior means all numbers in the interval except its ends. */
bool interiorContains(Interval const &val) const { return min() < val.min() && val.max() < max(); }
/// Check whether the number is contained in the union of the interior and the lower boundary.
bool lowerContains(Coord val) const { return min() <= val && val < max(); }
/// Check whether the given interval is contained in the union of the interior and the lower boundary.
bool lowerContains(Interval const &val) const { return min() <= val.min() && val.max() < max(); }
/// Check whether the number is contained in the union of the interior and the upper boundary.
bool upperContains(Coord val) { return min() < val && val <= max(); }
/// Check whether the given interval is contained in the union of the interior and the upper boundary.
bool upperContains(Interval const &val) const { return min() < val.min() && val.max() <= max(); }
/** @brief Check whether the interiors of the intervals have any common elements.
* A single point in common is not considered an intersection. */
bool interiorIntersects(Interval const &val) const {
return std::max(min(), val.min()) < std::min(max(), val.max());
}
/// @}
/// @name Operators
/// @{
// IMPL: ScalableConcept
/** @brief Scale an interval */
Interval &operator*=(Coord s) {
using std::swap;
_b[0] *= s;
_b[1] *= s;
if(s < 0) swap(_b[0], _b[1]);
return *this;
}
/** @brief Scale an interval by the inverse of the specified value */
Interval &operator/=(Coord s) {
using std::swap;
_b[0] /= s;
_b[1] /= s;
if(s < 0) swap(_b[0], _b[1]);
return *this;
}
/** @brief Multiply two intervals.
* Product is defined as the set of points that can be obtained by multiplying
* any value from the second operand by any value from the first operand:
* \f$S = \{x \in A, y \in B: x * y\}\f$ */
Interval &operator*=(Interval const &o) {
// TODO implement properly
Coord mn = min(), mx = max();
expandTo(mn * o.min());
expandTo(mn * o.max());
expandTo(mx * o.min());
expandTo(mx * o.max());
return *this;
}
bool operator==(IntInterval const &ii) const {
return min() == Coord(ii.min()) && max() == Coord(ii.max());
}
bool operator==(Interval const &other) const {
return Base::operator==(other);
}
/// @}
/// @name Rounding to integer values
/// @{
/** @brief Return the smallest integer interval which contains this one. */
IntInterval roundOutwards() const {
IntInterval ret(floor(min()), ceil(max()));
return ret;
}
/** @brief Return the largest integer interval which is contained in this one. */
OptIntInterval roundInwards() const {
IntCoord u = ceil(min()), v = floor(max());
if (u > v) { OptIntInterval e; return e; }
IntInterval ret(u, v);
return ret;
}
/// @}
};
/**
* @brief Range of real numbers that can be empty.
* @ingroup Primitives
*/
class OptInterval
: public GenericOptInterval<Coord>
{
typedef GenericOptInterval<Coord> Base;
public:
using Base::Base;
using Base::operator==;
using Base::operator!=;
OptInterval(Base const &b) : Base(b) {}
/** @brief Promote from IntInterval. */
OptInterval(IntInterval const &i) : Base(Interval(i)) {}
/** @brief Promote from OptIntInterval. */
OptInterval(OptIntInterval const &i) : Base() {
if (i) *this = Interval(*i);
}
};
// functions required for Python bindings
inline Interval unify(Interval const &a, Interval const &b)
{
Interval r = a | b;
return r;
}
inline OptInterval intersect(Interval const &a, Interval const &b)
{
OptInterval r = a & b;
return r;
}
} // end namespace Geom
#endif //SEEN_INTERVAL_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|