1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
|
/**
* \file
* \brief Infinite straight line
*//*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof Kosiński <tweenk.pl@gmail.com>
* Copyright 2008-2011 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_LINE_H
#define LIB2GEOM_SEEN_LINE_H
#include <cmath>
#include <optional>
#include <2geom/bezier-curve.h> // for LineSegment
#include <2geom/rect.h>
#include <2geom/crossing.h>
#include <2geom/exception.h>
#include <2geom/ray.h>
#include <2geom/angle.h>
#include <2geom/intersection.h>
namespace Geom
{
// class docs in cpp file
class Line
: boost::equality_comparable< Line >
{
private:
Point _initial;
Point _final;
public:
/// @name Creating lines.
/// @{
/** @brief Create a default horizontal line.
* Creates a line with unit speed going in +X direction. */
Line()
: _initial(0,0), _final(1,0)
{}
/** @brief Create a line with the specified inclination.
* @param origin One of the points on the line
* @param angle Angle of the line in mathematical convention */
Line(Point const &origin, Coord angle)
: _initial(origin)
{
Point v;
sincos(angle, v[Y], v[X]);
_final = _initial + v;
}
/** @brief Create a line going through two points.
* The first point will be at time 0, while the second one
* will be at time 1.
* @param a Initial point
* @param b First point */
Line(Point const &a, Point const &b)
: _initial(a)
, _final(b)
{}
/** @brief Create a line based on the coefficients of its equation.
@see Line::setCoefficients() */
Line(double a, double b, double c) {
setCoefficients(a, b, c);
}
/// Create a line by extending a line segment.
explicit Line(LineSegment const &seg)
: _initial(seg.initialPoint())
, _final(seg.finalPoint())
{}
/// Create a line by extending a ray.
explicit Line(Ray const &r)
: _initial(r.origin())
, _final(r.origin() + r.vector())
{}
/// Create a line normal to a vector at a specified distance from origin.
static Line from_normal_distance(Point const &n, Coord c) {
Point start = c * n.normalized();
Line l(start, start + rot90(n));
return l;
}
/** @brief Create a line from origin and unit vector.
* Note that each line direction has two possible unit vectors.
* @param o Point through which the line will pass
* @param v Unit vector of the line's direction */
static Line from_origin_and_vector(Point const &o, Point const &v) {
Line l(o, o + v);
return l;
}
Line* duplicate() const {
return new Line(*this);
}
/// @}
/// @name Retrieve and set the line's parameters.
/// @{
/// Get the line's origin point.
Point origin() const { return _initial; }
/** @brief Get the line's raw direction vector.
* The length of the retrieved vector is equal to the length of a segment parametrized by
* a time interval of length 1. */
Point vector() const { return _final - _initial; }
/** @brief Get the line's normalized direction vector.
* The retrieved vector is normalized to unit length. */
Point versor() const { return (_final - _initial).normalized(); }
/// Angle the line makes with the X axis, in mathematical convention.
Coord angle() const {
Point d = _final - _initial;
double a = std::atan2(d[Y], d[X]);
if (a < 0) a += M_PI;
if (a == M_PI) a = 0;
return a;
}
/** @brief Set the point at zero time.
* The orientation remains unchanged, modulo numeric errors during addition. */
void setOrigin(Point const &p) {
Point d = p - _initial;
_initial = p;
_final += d;
}
/** @brief Set the speed of the line.
* Origin remains unchanged. */
void setVector(Point const &v) {
_final = _initial + v;
}
/** @brief Set the angle the line makes with the X axis.
* Origin remains unchanged. */
void setAngle(Coord angle) {
Point v;
sincos(angle, v[Y], v[X]);
v *= distance(_initial, _final);
_final = _initial + v;
}
/// Set a line based on two points it should pass through.
void setPoints(Point const &a, Point const &b) {
_initial = a;
_final = b;
}
/** @brief Set the coefficients of the line equation.
* The line equation is: \f$ax + by = c\f$. Points that satisfy the equation
* are on the line. */
void setCoefficients(double a, double b, double c);
/** @brief Get the coefficients of the line equation as a vector.
* @return STL vector @a v such that @a v[0] contains \f$a\f$, @a v[1] contains \f$b\f$,
* and @a v[2] contains \f$c\f$. */
std::vector<double> coefficients() const;
/// Get the coefficients of the line equation by reference.
void coefficients(Coord &a, Coord &b, Coord &c) const;
/** @brief Check if the line has more than one point.
* A degenerate line can be created if the line is created from a line equation
* that has no solutions.
* @return True if the line has no points or exactly one point */
bool isDegenerate() const {
return _initial == _final;
}
/// Check if the line is horizontal (y is constant).
bool isHorizontal() const {
return _initial[Y] == _final[Y];
}
/// Check if the line is vertical (x is constant).
bool isVertical() const {
return _initial[X] == _final[X];
}
/** @brief Reparametrize the line so that it has unit speed.
* Note that the direction of the line may also change. */
void normalize() {
// this helps with the nasty case of a line that starts somewhere far
// and ends very close to the origin
if (L2sq(_final) < L2sq(_initial)) {
std::swap(_initial, _final);
}
Point v = _final - _initial;
v.normalize();
_final = _initial + v;
}
/** @brief Return a new line reparametrized for unit speed. */
Line normalized() const {
Point v = _final - _initial;
v.normalize();
Line ret(_initial, _initial + v);
return ret;
}
/// @}
/// @name Evaluate the line as a function.
///@{
Point initialPoint() const {
return _initial;
}
Point finalPoint() const {
return _final;
}
Point pointAt(Coord t) const {
return lerp(t, _initial, _final);;
}
Coord valueAt(Coord t, Dim2 d) const {
return lerp(t, _initial[d], _final[d]);
}
Coord timeAt(Point const &p) const;
/** @brief Get a time value corresponding to a projection of a point on the line.
* @param p Arbitrary point.
* @return Time value corresponding to a point closest to @c p. */
Coord timeAtProjection(Point const& p) const {
if ( isDegenerate() ) return 0;
Point v = vector();
return dot(p - _initial, v) / dot(v, v);
}
/** @brief Find a point on the line closest to the query point.
* This is an alias for timeAtProjection(). */
Coord nearestTime(Point const &p) const {
return timeAtProjection(p);
}
std::vector<Coord> roots(Coord v, Dim2 d) const;
Coord root(Coord v, Dim2 d) const;
/// @}
/// @name Create other objects based on this line.
/// @{
void reverse() {
std::swap(_final, _initial);
}
/** @brief Create a line containing the same points, but in opposite direction.
* @return Line \f$g\f$ such that \f$g(t) = f(1-t)\f$ */
Line reversed() const {
Line result(_final, _initial);
return result;
}
/** @brief Same as segment(), but allocate the line segment dynamically. */
// TODO remove this?
Curve* portion(Coord f, Coord t) const {
LineSegment* seg = new LineSegment(pointAt(f), pointAt(t));
return seg;
}
/** @brief Create a segment of this line.
* @param f Time value for the initial point of the segment
* @param t Time value for the final point of the segment
* @return Created line segment */
LineSegment segment(Coord f, Coord t) const {
return LineSegment(pointAt(f), pointAt(t));
}
/// Return the portion of the line that is inside the given rectangle
std::optional<LineSegment> clip(Rect const &r) const;
/** @brief Create a ray starting at the specified time value.
* The created ray will go in the direction of the line's vector (in the direction
* of increasing time values).
* @param t Time value where the ray should start
* @return Ray starting at t and going in the direction of the vector */
Ray ray(Coord t) {
Ray result;
result.setOrigin(pointAt(t));
result.setVector(vector());
return result;
}
/** @brief Create a derivative of the line.
* The new line will always be degenerate. Its origin will be equal to this
* line's vector. */
Line derivative() const {
Point v = vector();
Line result(v, v);
return result;
}
/// Create a line transformed by an affine transformation.
Line transformed(Affine const& m) const {
Line l(_initial * m, _final * m);
return l;
}
/** @brief Get a unit vector normal to the line.
* If Y grows upwards, then this is the left normal. If Y grows downwards,
* then this is the right normal. */
Point normal() const {
return rot90(vector()).normalized();
}
// what does this do?
Point normalAndDist(double & dist) const {
Point n = normal();
dist = -dot(n, _initial);
return n;
}
/// Compute an affine matrix representing a reflection about the line.
Affine reflection() const {
Point v = versor();
Coord x2 = v[X]*v[X], y2 = v[Y]*v[Y], xy = v[X]*v[Y];
Affine m(x2-y2, 2.*xy,
2.*xy, y2-x2,
_initial[X], _initial[Y]);
m = Translate(-_initial) * m;
return m;
}
/** @brief Compute an affine which transforms all points on the line to zero X or Y coordinate.
* This operation is useful in reducing intersection problems to root-finding problems.
* There are many affines which do this transformation. This function returns one that
* preserves angles, areas and distances - a rotation combined with a translation, and
* additionally moves the initial point of the line to (0,0). This way it works without
* problems even for lines perpendicular to the target, though may in some cases have
* lower precision than e.g. a shear transform.
* @param d Which coordinate of points on the line should be zero after the transformation */
Affine rotationToZero(Dim2 d) const {
Point v = vector();
if (d == X) {
std::swap(v[X], v[Y]);
} else {
v[Y] = -v[Y];
}
Affine m = Translate(-_initial) * Rotate(v);
return m;
}
/** @brief Compute a rotation affine which transforms the line to one of the axes.
* @param d Which line should be the axis */
Affine rotationToAxis(Dim2 d) const {
Affine m = rotationToZero(other_dimension(d));
return m;
}
Affine transformTo(Line const &other) const;
/// @}
std::vector<ShapeIntersection> intersect(Line const &other) const;
std::vector<ShapeIntersection> intersect(Ray const &r) const;
std::vector<ShapeIntersection> intersect(LineSegment const &ls) const;
template <typename T>
Line &operator*=(T const &tr) {
BOOST_CONCEPT_ASSERT((TransformConcept<T>));
_initial *= tr;
_final *= tr;
return *this;
}
bool operator==(Line const &other) const {
if (distance(pointAt(nearestTime(other._initial)), other._initial) != 0) return false;
if (distance(pointAt(nearestTime(other._final)), other._final) != 0) return false;
return true;
}
template <typename T>
friend Line operator*(Line const &l, T const &tr) {
BOOST_CONCEPT_ASSERT((TransformConcept<T>));
Line result(l);
result *= tr;
return result;
}
}; // end class Line
/** @brief Removes intersections outside of the unit interval.
* A helper used to implement line segment intersections.
* @param xs Line intersections
* @param a Whether the first time value has to be in the unit interval
* @param b Whether the second time value has to be in the unit interval
* @return Appropriately filtered intersections */
void filter_line_segment_intersections(std::vector<ShapeIntersection> &xs, bool a=false, bool b=true);
void filter_ray_intersections(std::vector<ShapeIntersection> &xs, bool a=false, bool b=true);
/// @brief Compute distance from point to line.
/// @relates Line
inline
double distance(Point const &p, Line const &line)
{
if (line.isDegenerate()) {
return ::Geom::distance(p, line.initialPoint());
} else {
Coord t = line.nearestTime(p);
return ::Geom::distance(line.pointAt(t), p);
}
}
inline
bool are_near(Point const &p, Line const &line, double eps = EPSILON)
{
return are_near(distance(p, line), 0, eps);
}
inline
bool are_parallel(Line const &l1, Line const &l2, double eps = EPSILON)
{
return are_near(cross(l1.vector(), l2.vector()), 0, eps);
}
/** @brief Test whether two lines are approximately the same.
* This tests for being parallel and the origin of one line being close to the other,
* so it tests whether the images of the lines are similar, not whether the same time values
* correspond to similar points. For example a line from (1,1) to (2,2) and a line from
* (-1,-1) to (0,0) will be the same, because their images match, even though there is
* no time value for which the lines give similar points.
* @relates Line */
inline
bool are_same(Line const &l1, Line const &l2, double eps = EPSILON)
{
return are_parallel(l1, l2, eps) && are_near(l1.origin(), l2, eps);
}
/// Test whether two lines are perpendicular.
/// @relates Line
inline
bool are_orthogonal(Line const &l1, Line const &l2, double eps = EPSILON)
{
return are_near(dot(l1.vector(), l2.vector()), 0, eps);
}
// evaluate the angle between l1 and l2 rotating l1 in cw direction
// until it overlaps l2
// the returned value is an angle in the interval [0, PI[
inline
double angle_between(Line const& l1, Line const& l2)
{
double angle = angle_between(l1.vector(), l2.vector());
if (angle < 0) angle += M_PI;
if (angle == M_PI) angle = 0;
return angle;
}
inline
double distance(Point const &p, LineSegment const &seg)
{
double t = seg.nearestTime(p);
return distance(p, seg.pointAt(t));
}
inline
bool are_near(Point const &p, LineSegment const &seg, double eps = EPSILON)
{
return are_near(distance(p, seg), 0, eps);
}
// build a line passing by _point and orthogonal to _line
inline
Line make_orthogonal_line(Point const &p, Line const &line)
{
Point d = line.vector().cw();
Line l(p, p + d);
return l;
}
// build a line passing by _point and parallel to _line
inline
Line make_parallel_line(Point const &p, Line const &line)
{
Line result(line);
result.setOrigin(p);
return result;
}
// build a line passing by the middle point of _segment and orthogonal to it.
inline
Line make_bisector_line(LineSegment const& _segment)
{
return make_orthogonal_line( middle_point(_segment), Line(_segment) );
}
// build the bisector line of the angle between ray(O,A) and ray(O,B)
inline
Line make_angle_bisector_line(Point const &A, Point const &O, Point const &B)
{
AngleInterval ival(Angle(A-O), Angle(B-O));
Angle bisect = ival.angleAt(0.5);
return Line(O, bisect);
}
// prj(P) = rot(v, Point( rot(-v, P-O)[X], 0 )) + O
inline
Point projection(Point const &p, Line const &line)
{
return line.pointAt(line.nearestTime(p));
}
inline
LineSegment projection(LineSegment const &seg, Line const &line)
{
return line.segment(line.nearestTime(seg.initialPoint()),
line.nearestTime(seg.finalPoint()));
}
inline
std::optional<LineSegment> clip(Line const &l, Rect const &r) {
return l.clip(r);
}
namespace detail
{
OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i);
OptCrossing intersection_impl( LineSegment const& ls1,
Line const& l2,
unsigned int i );
OptCrossing intersection_impl( LineSegment const& ls1,
Ray const& r2,
unsigned int i );
}
inline
OptCrossing intersection(Ray const& r1, Line const& l2)
{
return detail::intersection_impl(r1, l2, 0);
}
inline
OptCrossing intersection(Line const& l1, Ray const& r2)
{
return detail::intersection_impl(r2, l1, 1);
}
inline
OptCrossing intersection(LineSegment const& ls1, Line const& l2)
{
return detail::intersection_impl(ls1, l2, 0);
}
inline
OptCrossing intersection(Line const& l1, LineSegment const& ls2)
{
return detail::intersection_impl(ls2, l1, 1);
}
inline
OptCrossing intersection(LineSegment const& ls1, Ray const& r2)
{
return detail::intersection_impl(ls1, r2, 0);
}
inline
OptCrossing intersection(Ray const& r1, LineSegment const& ls2)
{
return detail::intersection_impl(ls2, r1, 1);
}
OptCrossing intersection(Line const& l1, Line const& l2);
OptCrossing intersection(Ray const& r1, Ray const& r2);
OptCrossing intersection(LineSegment const& ls1, LineSegment const& ls2);
} // end namespace Geom
#endif // LIB2GEOM_SEEN_LINE_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|