summaryrefslogtreecommitdiffstats
path: root/src/2geom/bezier-clipping.cpp
blob: 27da3d21335e777ab12f555760aabe945fddd150 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
/*
 * Implement the Bezier clipping algorithm for finding
 * Bezier curve intersection points and collinear normals
 *
 * Authors:
 *      Marco Cecchetti <mrcekets at gmail.com>
 *
 * Copyright 2008  authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */




#include <2geom/basic-intersection.h>
#include <2geom/choose.h>
#include <2geom/point.h>
#include <2geom/interval.h>
#include <2geom/bezier.h>
#include <2geom/numeric/matrix.h>
#include <2geom/convex-hull.h>
#include <2geom/line.h>

#include <cassert>
#include <vector>
#include <algorithm>
#include <utility>
//#include <iomanip>

using std::swap;


#define VERBOSE 0
#define CHECK 0

namespace Geom {

namespace detail { namespace bezier_clipping {

////////////////////////////////////////////////////////////////////////////////
// for debugging
//

void print(std::vector<Point> const& cp, const char* msg = "")
{
    std::cerr << msg << std::endl;
    for (size_t i = 0; i < cp.size(); ++i)
        std::cerr << i << " : " << cp[i] << std::endl;
}

template< class charT >
std::basic_ostream<charT> &
operator<< (std::basic_ostream<charT> & os, const Interval & I)
{
    os << "[" << I.min() << ", " << I.max() << "]";
    return os;
}

double angle (std::vector<Point> const& A)
{
    size_t n = A.size() -1;
    double a = std::atan2(A[n][Y] - A[0][Y], A[n][X] - A[0][X]);
    return (180 * a / M_PI);
}

size_t get_precision(Interval const& I)
{
    double d = I.extent();
    double e = 0.1, p = 10;
    int n = 0;
    while (n < 16 && d < e)
    {
        p *= 10;
        e = 1/p;
        ++n;
    }
    return n;
}

void range_assertion(int k, int m, int n, const char* msg)
{
    if ( k < m || k > n)
    {
        std::cerr << "range assertion failed: \n"
                  << msg << std::endl
                  << "value: " << k
                  << "  range: " << m << ", " << n << std::endl;
        assert (k >= m && k <= n);
    }
}


////////////////////////////////////////////////////////////////////////////////
//  numerical routines

/*
 * Compute the determinant of the 2x2 matrix with column the point P1, P2
 */
double det(Point const& P1, Point const& P2)
{
    return P1[X]*P2[Y] - P1[Y]*P2[X];
}

/*
 * Solve the linear system [P1,P2] * P = Q
 * in case there isn't exactly one solution the routine returns false
 */
bool solve(Point & P, Point const& P1, Point const& P2, Point const& Q)
{
    double d = det(P1, P2);
    if (d == 0)  return false;
    d = 1 / d;
    P[X] = det(Q, P2) * d;
    P[Y] = det(P1, Q) * d;
    return true;
}

////////////////////////////////////////////////////////////////////////////////
// interval routines

/*
 * Map the sub-interval I in [0,1] into the interval J and assign it to J
 */
void map_to(Interval & J, Interval const& I)
{
    J.setEnds(J.valueAt(I.min()), J.valueAt(I.max()));
}

////////////////////////////////////////////////////////////////////////////////
// bezier curve routines

/*
 * Return true if all the Bezier curve control points are near,
 * false otherwise
 */
// Bezier.isConstant(precision)
bool is_constant(std::vector<Point> const& A, double precision)
{
    for (unsigned int i = 1; i < A.size(); ++i)
    {
        if(!are_near(A[i], A[0], precision))
            return false;
    }
    return true;
}

/*
 * Compute the hodograph of the bezier curve B and return it in D
 */
// derivative(Bezier)
void derivative(std::vector<Point> & D, std::vector<Point> const& B)
{
    D.clear();
    size_t sz = B.size();
    if (sz == 0) return;
    if (sz == 1)
    {
        D.resize(1, Point(0,0));
        return;
    }
    size_t n = sz-1;
    D.reserve(n);
    for (size_t i = 0; i < n; ++i)
    {
        D.push_back(n*(B[i+1] - B[i]));
    }
}

/*
 * Compute the hodograph of the Bezier curve B rotated of 90 degree
 * and return it in D; we have N(t) orthogonal to B(t) for any t
 */
// rot90(derivative(Bezier))
void normal(std::vector<Point> & N, std::vector<Point> const& B)
{
    derivative(N,B);
    for (auto & i : N)
    {
        i = rot90(i);
    }
}

/*
 *  Compute the portion of the Bezier curve "B" wrt the interval [0,t]
 */
// portion(Bezier, 0, t)
void left_portion(Coord t, std::vector<Point> & B)
{
    size_t n = B.size();
    for (size_t i = 1; i < n; ++i)
    {
        for (size_t j = n-1; j > i-1 ; --j)
        {
            B[j] = lerp(t, B[j-1], B[j]);
        }
    }
}

/*
 *  Compute the portion of the Bezier curve "B" wrt the interval [t,1]
 */
// portion(Bezier, t, 1)
void right_portion(Coord t, std::vector<Point> & B)
{
    size_t n = B.size();
    for (size_t i = 1; i < n; ++i)
    {
        for (size_t j = 0; j < n-i; ++j)
        {
            B[j] = lerp(t, B[j], B[j+1]);
        }
    }
}

/*
 *  Compute the portion of the Bezier curve "B" wrt the interval "I"
 */
// portion(Bezier, I)
void portion (std::vector<Point> & B , Interval const& I)
{
    if (I.min() == 0)
    {
        if (I.max() == 1)  return;
        left_portion(I.max(), B);
        return;
    }
    right_portion(I.min(), B);
    if (I.max() == 1)  return;
    double t = I.extent() / (1 - I.min());
    left_portion(t, B);
}


////////////////////////////////////////////////////////////////////////////////
// tags

struct intersection_point_tag;
struct collinear_normal_tag;
template <typename Tag>
OptInterval clip(std::vector<Point> const& A,
                 std::vector<Point> const& B,
                 double precision);
template <typename Tag>
void iterate(std::vector<Interval>& domsA,
             std::vector<Interval>& domsB,
             std::vector<Point> const& A,
             std::vector<Point> const& B,
             Interval const& domA,
             Interval const& domB,
             double precision );


////////////////////////////////////////////////////////////////////////////////
// intersection

/*
 *  Make up an orientation line using the control points c[i] and c[j]
 *  the line is returned in the output parameter "l" in the form of a 3 element
 *  vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized.
 */
// Line(c[i], c[j])
void orientation_line (std::vector<double> & l,
                       std::vector<Point> const& c,
                       size_t i, size_t j)
{
    l[0] = c[j][Y] - c[i][Y];
    l[1] = c[i][X] - c[j][X];
    l[2] = cross(c[j], c[i]);
    double length = std::sqrt(l[0] * l[0] + l[1] * l[1]);
    assert (length != 0);
    l[0] /= length;
    l[1] /= length;
    l[2] /= length;
}

/*
 * Pick up an orientation line for the Bezier curve "c" and return it in
 * the output parameter "l"
 */
Line pick_orientation_line (std::vector<Point> const &c, double precision)
{
    size_t i = c.size();
    while (--i > 0 && are_near(c[0], c[i], precision))
    {}
 
    // this should never happen because when a new curve portion is created
    // we check that it is not constant;
    // however this requires that the precision used in the is_constant
    // routine has to be the same used here in the are_near test
    assert(i != 0);

    Line line(c[0], c[i]);
    return line;
    //std::cerr << "i = " << i << std::endl;
}

/*
 *  Make up an orientation line for constant bezier curve;
 *  the orientation line is made up orthogonal to the other curve base line;
 *  the line is returned in the output parameter "l" in the form of a 3 element
 *  vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized.
 */
Line orthogonal_orientation_line (std::vector<Point> const &c,
                                  Point const &p,
                                  double precision)
{
    // this should never happen
    assert(!is_constant(c, precision));

    Line line(p, (c.back() - c.front()).cw() + p);
    return line;
}

/*
 *  Compute the signed distance of the point "P" from the normalized line l
 */
double signed_distance(Point const &p, Line const &l)
{
    Coord a, b, c;
    l.coefficients(a, b, c);
    return a * p[X] + b * p[Y] + c;
}

/*
 * Compute the min and max distance of the control points of the Bezier
 * curve "c" from the normalized orientation line "l".
 * This bounds are returned through the output Interval parameter"bound".
 */
Interval fat_line_bounds (std::vector<Point> const &c,
                          Line const &l)
{
    Interval bound(0, 0);
    for (auto i : c) {
        bound.expandTo(signed_distance(i, l));
    }
    return bound;
}

/*
 * return the x component of the intersection point between the line
 * passing through points p1, p2 and the line Y = "y"
 */
double intersect (Point const& p1, Point const& p2, double y)
{
    // we are sure that p2[Y] != p1[Y] because this routine is called
    // only when the lower or the upper bound is crossed
    double dy = (p2[Y] - p1[Y]);
    double s = (y - p1[Y]) / dy;
    return (p2[X]-p1[X])*s + p1[X];
}

/*
 * Clip the Bezier curve "B" wrt the fat line defined by the orientation
 * line "l" and the interval range "bound", the new parameter interval for
 * the clipped curve is returned through the output parameter "dom"
 */
OptInterval clip_interval (std::vector<Point> const& B,
                           Line const &l,
                           Interval const &bound)
{
    double n = B.size() - 1;  // number of sub-intervals
    std::vector<Point> D;     // distance curve control points
    D.reserve (B.size());
    for (size_t i = 0; i < B.size(); ++i)
    {
        const double d = signed_distance(B[i], l);
        D.emplace_back(i/n, d);
    }
    //print(D);

    ConvexHull p;
    p.swap(D);
    //print(p);

    bool plower, phigher;
    bool clower, chigher;
    double t, tmin = 1, tmax = 0;
//    std::cerr << "bound : " << bound << std::endl;

    plower = (p[0][Y] < bound.min());
    phigher = (p[0][Y] > bound.max());
    if (!(plower || phigher))  // inside the fat line
    {
        if (tmin > p[0][X])  tmin = p[0][X];
        if (tmax < p[0][X])  tmax = p[0][X];
//        std::cerr << "0 : inside " << p[0]
//                  << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
    }

    for (size_t i = 1; i < p.size(); ++i)
    {
        clower = (p[i][Y] < bound.min());
        chigher = (p[i][Y] > bound.max());
        if (!(clower || chigher))  // inside the fat line
        {
            if (tmin > p[i][X])  tmin = p[i][X];
            if (tmax < p[i][X])  tmax = p[i][X];
//            std::cerr << i << " : inside " << p[i]
//                      << " : tmin = " << tmin << ", tmax = " << tmax
//                      << std::endl;
        }
        if (clower != plower)  // cross the lower bound
        {
            t = intersect(p[i-1], p[i], bound.min());
            if (tmin > t)  tmin = t;
            if (tmax < t)  tmax = t;
            plower = clower;
//            std::cerr << i << " : lower " << p[i]
//                      << " : tmin = " << tmin << ", tmax = " << tmax
//                      << std::endl;
        }
        if (chigher != phigher)  // cross the upper bound
        {
            t = intersect(p[i-1], p[i], bound.max());
            if (tmin > t)  tmin = t;
            if (tmax < t)  tmax = t;
            phigher = chigher;
//            std::cerr << i << " : higher " << p[i]
//                      << " : tmin = " << tmin << ", tmax = " << tmax
//                      << std::endl;
        }
    }

    // we have to test the closing segment for intersection
    size_t last = p.size() - 1;
    clower = (p[0][Y] < bound.min());
    chigher = (p[0][Y] > bound.max());
    if (clower != plower)  // cross the lower bound
    {
        t = intersect(p[last], p[0], bound.min());
        if (tmin > t)  tmin = t;
        if (tmax < t)  tmax = t;
//        std::cerr << "0 : lower " << p[0]
//                  << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
    }
    if (chigher != phigher)  // cross the upper bound
    {
        t = intersect(p[last], p[0], bound.max());
        if (tmin > t)  tmin = t;
        if (tmax < t)  tmax = t;
//        std::cerr << "0 : higher " << p[0]
//                  << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
    }

    if (tmin == 1 && tmax == 0) {
        return OptInterval();
    } else {
        return Interval(tmin, tmax);
    }
}

/*
 *  Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating
 *  intersection points the new parameter interval for the clipped curve
 *  is returned through the output parameter "dom"
 */
template <>
OptInterval clip<intersection_point_tag> (std::vector<Point> const& A,
                                          std::vector<Point> const& B,
                                          double precision)
{
    Line bl;
    if (is_constant(A, precision)) {
        Point M = middle_point(A.front(), A.back());
        bl = orthogonal_orientation_line(B, M, precision);
    } else {
        bl = pick_orientation_line(A, precision);
    }
    bl.normalize();
    Interval bound = fat_line_bounds(A, bl);
    return clip_interval(B, bl, bound);
}


///////////////////////////////////////////////////////////////////////////////
// collinear normal

/*
 * Compute a closed focus for the Bezier curve B and return it in F
 * A focus is any curve through which all lines perpendicular to B(t) pass.
 */
void make_focus (std::vector<Point> & F, std::vector<Point> const& B)
{
    assert (B.size() > 2);
    size_t n = B.size() - 1;
    normal(F, B);
    Point c(1, 1);
#if VERBOSE
    if (!solve(c, F[0], -F[n-1], B[n]-B[0]))
    {
        std::cerr << "make_focus: unable to make up a closed focus" << std::endl;
    }
#else
    solve(c, F[0], -F[n-1], B[n]-B[0]);
#endif
//    std::cerr << "c = " << c << std::endl;


    // B(t) + c(t) * N(t)
    double n_inv = 1 / (double)(n);
    Point c0ni;
    F.push_back(c[1] * F[n-1]);
    F[n] += B[n];
    for (size_t i = n-1; i > 0; --i)
    {
        F[i] *= -c[0];
        c0ni = F[i];
        F[i] += (c[1] * F[i-1]);
        F[i] *= (i * n_inv);
        F[i] -= c0ni;
        F[i] += B[i];
    }
    F[0] *= c[0];
    F[0] += B[0];
}

/*
 * Compute the projection on the plane (t, d) of the control points
 * (t, u, D(t,u)) where D(t,u) = <(B(t) - F(u)), B'(t)> with 0 <= t, u <= 1
 * B is a Bezier curve and F is a focus of another Bezier curve.
 * See Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping.
 */
void distance_control_points (std::vector<Point> & D,
                              std::vector<Point> const& B,
                              std::vector<Point> const& F)
{
    assert (B.size() > 1);
    assert (!F.empty());
    const size_t n = B.size() - 1;
    const size_t m = F.size() - 1;
    const size_t r = 2 * n - 1;
    const double r_inv = 1 / (double)(r);
    D.clear();
    D.reserve (B.size() * F.size());

    std::vector<Point> dB;
    dB.reserve(n);
    for (size_t k = 0; k < n; ++k)
    {
        dB.push_back (B[k+1] - B[k]);
    }
    NL::Matrix dBB(n,B.size());
    for (size_t i = 0; i < n; ++i)
        for (size_t j = 0; j < B.size(); ++j)
            dBB(i,j) = dot (dB[i], B[j]);
    NL::Matrix dBF(n, F.size());
    for (size_t i = 0; i < n; ++i)
        for (size_t j = 0; j < F.size(); ++j)
            dBF(i,j) = dot (dB[i], F[j]);

    size_t l;
    double bc;
    Point dij;
    std::vector<double> d(F.size());
    int rci = 1;
    int b1 = 1;
    for (size_t i = 0; i <= r; ++i)
    {
        for (size_t j = 0; j <= m; ++j)
        {
            d[j] = 0;
        }
        const size_t k0 = std::max(i, n) - n;
        const size_t kn = std::min(i, n-1);
        const double bri = (double)n / rci;

        // assert(rci == binomial(r, i));
        binomial_increment_k(rci, r, i);

        int b2 = b1;
        for (size_t k = k0; k <= kn; ++k)
        {
            //if (k > i || (i-k) > n) continue;
            l = i - k;
#if CHECK
            assert (l <= n);
#endif
            bc = bri * b2;

            // assert(b2 == binomial(n, l) * binomial(n - 1, k));
            binomial_decrement_k(b2, n, l);
            binomial_increment_k(b2, n - 1, k);

            for (size_t j = 0; j <= m; ++j)
            {
                //d[j] += bc * dot(dB[k], B[l] - F[j]);
                d[j] += bc * (dBB(k,l) - dBF(k,j));
            }
        }

        // assert(b1 == binomial(n, i - k0) * binomial(n - 1, k0));
        if (i < n) {
            binomial_increment_k(b1, n, i);
        } else {
            binomial_increment_k(b1, n - 1, k0);
        }

        double dmin, dmax;
        dmin = dmax = d[m];
        for (size_t j = 0; j < m; ++j)
        {
            if (dmin > d[j])  dmin = d[j];
            if (dmax < d[j])  dmax = d[j];
        }
        dij[0] = i * r_inv;
        dij[1] = dmin;
        D.push_back (dij);
        dij[1] = dmax;
        D.push_back (dij);
    }
}

/*
 * Clip the Bezier curve "B" wrt the focus "F"; the new parameter interval for
 * the clipped curve is returned through the output parameter "dom"
 */
OptInterval clip_interval (std::vector<Point> const& B,
                           std::vector<Point> const& F)
{
    std::vector<Point> D;     // distance curve control points
    distance_control_points(D, B, F);
    //print(D, "D");
//    ConvexHull chD(D);
//    std::vector<Point>& p = chD.boundary; // convex hull vertices

    ConvexHull p;
    p.swap(D);
    //print(p, "CH(D)");

    bool plower, clower;
    double t, tmin = 1, tmax = 0;

    plower = (p[0][Y] < 0);
    if (p[0][Y] == 0)  // on the x axis
    {
        if (tmin > p[0][X])  tmin = p[0][X];
        if (tmax < p[0][X])  tmax = p[0][X];
//        std::cerr << "0 : on x axis " << p[0]
//                  << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
    }

    for (size_t i = 1; i < p.size(); ++i)
    {
        clower = (p[i][Y] < 0);
        if (p[i][Y] == 0)  // on x axis
        {
            if (tmin > p[i][X])  tmin = p[i][X];
            if (tmax < p[i][X])  tmax = p[i][X];
//            std::cerr << i << " : on x axis " << p[i]
//                      << " : tmin = " << tmin << ", tmax = " << tmax
//                      << std::endl;
        }
        else if (clower != plower)  // cross the x axis
        {
            t = intersect(p[i-1], p[i], 0);
            if (tmin > t)  tmin = t;
            if (tmax < t)  tmax = t;
            plower = clower;
//            std::cerr << i << " : lower " << p[i]
//                      << " : tmin = " << tmin << ", tmax = " << tmax
//                      << std::endl;
        }
    }

    // we have to test the closing segment for intersection
    size_t last = p.size() - 1;
    clower = (p[0][Y] < 0);
    if (clower != plower)  // cross the x axis
    {
        t = intersect(p[last], p[0], 0);
        if (tmin > t)  tmin = t;
        if (tmax < t)  tmax = t;
//        std::cerr << "0 : lower " << p[0]
//                  << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
    }
    if (tmin == 1 && tmax == 0) {
        return OptInterval();
    } else {
        return Interval(tmin, tmax);
    }
}

/*
 *  Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating
 *  points which have collinear normals; the new parameter interval
 *  for the clipped curve is returned through the output parameter "dom"
 */
template <>
OptInterval clip<collinear_normal_tag> (std::vector<Point> const& A,
                                        std::vector<Point> const& B,
                                        double /*precision*/)
{
    std::vector<Point> F;
    make_focus(F, A);
    return clip_interval(B, F);
}



const double MAX_PRECISION = 1e-8;
const double MIN_CLIPPED_SIZE_THRESHOLD = 0.8;
const Interval UNIT_INTERVAL(0,1);
const OptInterval EMPTY_INTERVAL;
const Interval H1_INTERVAL(0, 0.5);
const Interval H2_INTERVAL(nextafter(0.5, 1.0), 1.0);

/*
 * iterate
 *
 * input:
 * A, B: control point sets of two bezier curves
 * domA, domB: real parameter intervals of the two curves
 * precision: required computational precision of the returned parameter ranges
 * output:
 * domsA, domsB: sets of parameter intervals
 *
 * The parameter intervals are computed by using a Bezier clipping algorithm,
 * in case the clipping doesn't shrink the initial interval more than 20%,
 * a subdivision step is performed.
 * If during the computation both curves collapse to a single point
 * the routine exits independently by the precision reached in the computation
 * of the curve intervals.
 */
template <>
void iterate<intersection_point_tag> (std::vector<Interval>& domsA,
                                      std::vector<Interval>& domsB,
                                      std::vector<Point> const& A,
                                      std::vector<Point> const& B,
                                      Interval const& domA,
                                      Interval const& domB,
                                      double precision )
{
    // in order to limit recursion
    static size_t counter = 0;
    if (domA.extent() == 1 && domB.extent() == 1) counter  = 0;
    if (++counter > 100) return;
#if VERBOSE
    std::cerr << std::fixed << std::setprecision(16);
    std::cerr << ">> curve subdision performed <<" << std::endl;
    std::cerr << "dom(A) : " << domA << std::endl;
    std::cerr << "dom(B) : " << domB << std::endl;
//    std::cerr << "angle(A) : " << angle(A) << std::endl;
//    std::cerr << "angle(B) : " << angle(B) << std::endl;
#endif

    if (precision < MAX_PRECISION)
        precision = MAX_PRECISION;

    std::vector<Point> pA = A;
    std::vector<Point> pB = B;
    std::vector<Point>* C1 = &pA;
    std::vector<Point>* C2 = &pB;

    Interval dompA = domA;
    Interval dompB = domB;
    Interval* dom1 = &dompA;
    Interval* dom2 = &dompB;

    OptInterval dom;

    if ( is_constant(A, precision) && is_constant(B, precision) ){
        Point M1 = middle_point(C1->front(), C1->back());
        Point M2 = middle_point(C2->front(), C2->back());
        if (are_near(M1,M2)){
            domsA.push_back(domA);
            domsB.push_back(domB);
        }
        return;
    }

    size_t iter = 0;
    while (++iter < 100
            && (dompA.extent() >= precision || dompB.extent() >= precision))
    {
#if VERBOSE
        std::cerr << "iter: " << iter << std::endl;
#endif
        dom = clip<intersection_point_tag>(*C1, *C2, precision);

        if (dom.empty())
        {
#if VERBOSE
            std::cerr << "dom: empty" << std::endl;
#endif
            return;
        }
#if VERBOSE
        std::cerr << "dom : " << dom << std::endl;
#endif
        // all other cases where dom[0] > dom[1] are invalid
        assert(dom->min() <= dom->max());

        map_to(*dom2, *dom);

        portion(*C2, *dom);
        if (is_constant(*C2, precision) && is_constant(*C1, precision))
        {
            Point M1 = middle_point(C1->front(), C1->back());
            Point M2 = middle_point(C2->front(), C2->back());
#if VERBOSE
            std::cerr << "both curves are constant: \n"
                      << "M1: " << M1 << "\n"
                      << "M2: " << M2 << std::endl;
            print(*C2, "C2");
            print(*C1, "C1");
#endif
            if (are_near(M1,M2))
                break;  // append the new interval
            else
                return; // exit without appending any new interval
        }


        // if we have clipped less than 20% than we need to subdive the curve
        // with the largest domain into two sub-curves
        if (dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD)
        {
#if VERBOSE
            std::cerr << "clipped less than 20% : " << dom->extent() << std::endl;
            std::cerr << "angle(pA) : " << angle(pA) << std::endl;
            std::cerr << "angle(pB) : " << angle(pB) << std::endl;
#endif
            std::vector<Point> pC1, pC2;
            Interval dompC1, dompC2;
            if (dompA.extent() > dompB.extent())
            {
                pC1 = pC2 = pA;
                portion(pC1, H1_INTERVAL);
                portion(pC2, H2_INTERVAL);
                dompC1 = dompC2 = dompA;
                map_to(dompC1, H1_INTERVAL);
                map_to(dompC2, H2_INTERVAL);
                iterate<intersection_point_tag>(domsA, domsB, pC1, pB,
                                                dompC1, dompB, precision);
                iterate<intersection_point_tag>(domsA, domsB, pC2, pB,
                                                dompC2, dompB, precision);
            }
            else
            {
                pC1 = pC2 = pB;
                portion(pC1, H1_INTERVAL);
                portion(pC2, H2_INTERVAL);
                dompC1 = dompC2 = dompB;
                map_to(dompC1, H1_INTERVAL);
                map_to(dompC2, H2_INTERVAL);
                iterate<intersection_point_tag>(domsB, domsA, pC1, pA,
                                                dompC1, dompA, precision);
                iterate<intersection_point_tag>(domsB, domsA, pC2, pA,
                                                dompC2, dompA, precision);
            }
            return;
        }

        swap(C1, C2);
        swap(dom1, dom2);
#if VERBOSE
        std::cerr << "dom(pA) : " << dompA << std::endl;
        std::cerr << "dom(pB) : " << dompB << std::endl;
#endif
    }
    domsA.push_back(dompA);
    domsB.push_back(dompB);
}


/*
 * iterate
 *
 * input:
 * A, B: control point sets of two bezier curves
 * domA, domB: real parameter intervals of the two curves
 * precision: required computational precision of the returned parameter ranges
 * output:
 * domsA, domsB: sets of parameter intervals
 *
 * The parameter intervals are computed by using a Bezier clipping algorithm,
 * in case the clipping doesn't shrink the initial interval more than 20%,
 * a subdivision step is performed.
 * If during the computation one of the two curve interval length becomes less
 * than MAX_PRECISION the routine exits independently by the precision reached
 * in the computation of the other curve interval.
 */
template <>
void iterate<collinear_normal_tag> (std::vector<Interval>& domsA,
                                    std::vector<Interval>& domsB,
                                    std::vector<Point> const& A,
                                    std::vector<Point> const& B,
                                    Interval const& domA,
                                    Interval const& domB,
                                    double precision)
{
    // in order to limit recursion
    static size_t counter = 0;
    if (domA.extent() == 1 && domB.extent() == 1) counter  = 0;
    if (++counter > 100) return;
#if VERBOSE
    std::cerr << std::fixed << std::setprecision(16);
    std::cerr << ">> curve subdision performed <<" << std::endl;
    std::cerr << "dom(A) : " << domA << std::endl;
    std::cerr << "dom(B) : " << domB << std::endl;
//    std::cerr << "angle(A) : " << angle(A) << std::endl;
//    std::cerr << "angle(B) : " << angle(B) << std::endl;
#endif

    if (precision < MAX_PRECISION)
        precision = MAX_PRECISION;

    std::vector<Point> pA = A;
    std::vector<Point> pB = B;
    std::vector<Point>* C1 = &pA;
    std::vector<Point>* C2 = &pB;

    Interval dompA = domA;
    Interval dompB = domB;
    Interval* dom1 = &dompA;
    Interval* dom2 = &dompB;

    OptInterval dom;

    size_t iter = 0;
    while (++iter < 100
            && (dompA.extent() >= precision || dompB.extent() >= precision))
    {
#if VERBOSE
        std::cerr << "iter: " << iter << std::endl;
#endif
        dom = clip<collinear_normal_tag>(*C1, *C2, precision);

        if (dom.empty()) {
#if VERBOSE
            std::cerr << "dom: empty" << std::endl;
#endif
            return;
        }
#if VERBOSE
        std::cerr << "dom : " << dom << std::endl;
#endif
        assert(dom->min() <= dom->max());

        map_to(*dom2, *dom);

        // it's better to stop before losing computational precision
        if (iter > 1 && (dom2->extent() <= MAX_PRECISION))
        {
#if VERBOSE
            std::cerr << "beyond max precision limit" << std::endl;
#endif
            break;
        }

        portion(*C2, *dom);
        if (iter > 1 && is_constant(*C2, precision))
        {
#if VERBOSE
            std::cerr << "new curve portion pC1 is constant" << std::endl;
#endif
            break;
        }


        // if we have clipped less than 20% than we need to subdive the curve
        // with the largest domain into two sub-curves
        if ( dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD)
        {
#if VERBOSE
            std::cerr << "clipped less than 20% : " << dom->extent() << std::endl;
            std::cerr << "angle(pA) : " << angle(pA) << std::endl;
            std::cerr << "angle(pB) : " << angle(pB) << std::endl;
#endif
            std::vector<Point> pC1, pC2;
            Interval dompC1, dompC2;
            if (dompA.extent() > dompB.extent())
            {
                if ((dompA.extent() / 2) < MAX_PRECISION)
                {
                    break;
                }
                pC1 = pC2 = pA;
                portion(pC1, H1_INTERVAL);
                if (false && is_constant(pC1, precision))
                {
#if VERBOSE
                    std::cerr << "new curve portion pC1 is constant" << std::endl;
#endif
                    break;
                }
                portion(pC2, H2_INTERVAL);
                if (is_constant(pC2, precision))
                {
#if VERBOSE
                    std::cerr << "new curve portion pC2 is constant" << std::endl;
#endif
                    break;
                }
                dompC1 = dompC2 = dompA;
                map_to(dompC1, H1_INTERVAL);
                map_to(dompC2, H2_INTERVAL);
                iterate<collinear_normal_tag>(domsA, domsB, pC1, pB,
                                              dompC1, dompB, precision);
                iterate<collinear_normal_tag>(domsA, domsB, pC2, pB,
                                              dompC2, dompB, precision);
            }
            else
            {
                if ((dompB.extent() / 2) < MAX_PRECISION)
                {
                    break;
                }
                pC1 = pC2 = pB;
                portion(pC1, H1_INTERVAL);
                if (is_constant(pC1, precision))
                {
#if VERBOSE
                    std::cerr << "new curve portion pC1 is constant" << std::endl;
#endif
                    break;
                }
                portion(pC2, H2_INTERVAL);
                if (is_constant(pC2, precision))
                {
#if VERBOSE
                    std::cerr << "new curve portion pC2 is constant" << std::endl;
#endif
                    break;
                }
                dompC1 = dompC2 = dompB;
                map_to(dompC1, H1_INTERVAL);
                map_to(dompC2, H2_INTERVAL);
                iterate<collinear_normal_tag>(domsB, domsA, pC1, pA,
                                              dompC1, dompA, precision);
                iterate<collinear_normal_tag>(domsB, domsA, pC2, pA,
                                              dompC2, dompA, precision);
            }
            return;
        }

        swap(C1, C2);
        swap(dom1, dom2);
#if VERBOSE
        std::cerr << "dom(pA) : " << dompA << std::endl;
        std::cerr << "dom(pB) : " << dompB << std::endl;
#endif
    }
    domsA.push_back(dompA);
    domsB.push_back(dompB);
}


/*
 * get_solutions
 *
 *  input: A, B       - set of control points of two Bezier curve
 *  input: precision  - required precision of computation
 *  input: clip       - the routine used for clipping
 *  output: xs        - set of pairs of parameter values
 *                      at which the clipping algorithm converges
 *
 *  This routine is based on the Bezier Clipping Algorithm,
 *  see: Sederberg - Computer Aided Geometric Design
 */
template <typename Tag>
void get_solutions (std::vector< std::pair<double, double> >& xs,
                    std::vector<Point> const& A,
                    std::vector<Point> const& B,
                    double precision)
{
    std::pair<double, double> ci;
    std::vector<Interval> domsA, domsB;
    iterate<Tag> (domsA, domsB, A, B, UNIT_INTERVAL, UNIT_INTERVAL, precision);
    if (domsA.size() != domsB.size())
    {
        assert (domsA.size() == domsB.size());
    }
    xs.clear();
    xs.reserve(domsA.size());
    for (size_t i = 0; i < domsA.size(); ++i)
    {
#if VERBOSE
        std::cerr << i << " : domA : " << domsA[i] << std::endl;
        std::cerr << "extent A: " << domsA[i].extent() << "  ";
        std::cerr << "precision A: " << get_precision(domsA[i]) << std::endl;
        std::cerr << i << " : domB : " << domsB[i] << std::endl;
        std::cerr << "extent B: " << domsB[i].extent() << "  ";
        std::cerr << "precision B: " << get_precision(domsB[i]) << std::endl;
#endif
        ci.first = domsA[i].middle();
        ci.second = domsB[i].middle();
        xs.push_back(ci);
    }
}

} /* end namespace bezier_clipping */ } /* end namespace detail */


/*
 * find_collinear_normal
 *
 *  input: A, B       - set of control points of two Bezier curve
 *  input: precision  - required precision of computation
 *  output: xs        - set of pairs of parameter values
 *                      at which there are collinear normals
 *
 *  This routine is based on the Bezier Clipping Algorithm,
 *  see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping
 */
void find_collinear_normal (std::vector< std::pair<double, double> >& xs,
                            std::vector<Point> const& A,
                            std::vector<Point> const& B,
                            double precision)
{
    using detail::bezier_clipping::get_solutions;
    using detail::bezier_clipping::collinear_normal_tag;
    get_solutions<collinear_normal_tag>(xs, A, B, precision);
}


/*
 * find_intersections_bezier_clipping
 *
 *  input: A, B       - set of control points of two Bezier curve
 *  input: precision  - required precision of computation
 *  output: xs        - set of pairs of parameter values
 *                      at which crossing happens
 *
 *  This routine is based on the Bezier Clipping Algorithm,
 *  see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping
 */
void find_intersections_bezier_clipping (std::vector< std::pair<double, double> >& xs,
                         std::vector<Point> const& A,
                         std::vector<Point> const& B,
                         double precision)
{
    using detail::bezier_clipping::get_solutions;
    using detail::bezier_clipping::intersection_point_tag;
    get_solutions<intersection_point_tag>(xs, A, B, precision);
}

}  // end namespace Geom




/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :