summaryrefslogtreecommitdiffstats
path: root/src/2geom/d2-sbasis.cpp
blob: 4e95f6f106f38b1eb6801dfdfbd0e8f27d962bc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/**
 * \file
 * \brief Some two-dimensional SBasis operations
 *//*
 * Authors:
 *   MenTaLguy <mental@rydia.net>
 *   Jean-François Barraud <jf.barraud@gmail.com>
 *   Johan Engelen <j.b.c.engelen@alumnus.utwente.nl>
 *   
 * Copyright 2007-2012 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, output to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 */

#include <2geom/d2.h>
#include <2geom/piecewise.h>

namespace Geom {

SBasis L2(D2<SBasis> const & a, unsigned k) { return sqrt(dot(a, a), k); }

D2<SBasis> multiply(Linear const & a, D2<SBasis> const & b) {
    return D2<SBasis>(multiply(a, b[X]), multiply(a, b[Y]));
}

D2<SBasis> multiply(SBasis const & a, D2<SBasis> const & b) {
    return D2<SBasis>(multiply(a, b[X]), multiply(a, b[Y]));
}

D2<SBasis> truncate(D2<SBasis> const & a, unsigned terms) {
    return D2<SBasis>(truncate(a[X], terms), truncate(a[Y], terms));
}

unsigned sbasis_size(D2<SBasis> const & a) {
    return std::max((unsigned) a[0].size(), (unsigned) a[1].size());
}

//TODO: Is this sensical? shouldn't it be like pythagorean or something?
double tail_error(D2<SBasis> const & a, unsigned tail) {
    return std::max(a[0].tailError(tail), a[1].tailError(tail));
}

Piecewise<D2<SBasis> > sectionize(D2<Piecewise<SBasis> > const &a) {
    Piecewise<SBasis> x = partition(a[0], a[1].cuts), y = partition(a[1], a[0].cuts);
    assert(x.size() == y.size());
    Piecewise<D2<SBasis> > ret;
    for(unsigned i = 0; i < x.size(); i++)
        ret.push_seg(D2<SBasis>(x[i], y[i]));
    ret.cuts.insert(ret.cuts.end(), x.cuts.begin(), x.cuts.end());
    return ret;
}

D2<Piecewise<SBasis> > make_cuts_independent(Piecewise<D2<SBasis> > const &a) {
    D2<Piecewise<SBasis> > ret;
    for(unsigned d = 0; d < 2; d++) {
        for(unsigned i = 0; i < a.size(); i++)
            ret[d].push_seg(a[i][d]);
        ret[d].cuts.insert(ret[d].cuts.end(), a.cuts.begin(), a.cuts.end());
    }
    return ret;
}

Piecewise<D2<SBasis> > rot90(Piecewise<D2<SBasis> > const &M){
  Piecewise<D2<SBasis> > result;
  if (M.empty()) return M;
  result.push_cut(M.cuts[0]);
  for (unsigned i=0; i<M.size(); i++){
    result.push(rot90(M[i]),M.cuts[i+1]);
  }
  return result;
}

/** @brief Calculates the 'dot product' or 'inner product' of \c a and \c b
 * @return  \f[
 *      f(t) \rightarrow \left\{ 
 *      \begin{array}{c}
 *      a_1 \bullet b_1 \\
 *      a_2 \bullet b_2 \\
 *      \ldots \\
 *      a_n \bullet b_n \\
 *      \end{array}\right.
 * \f]
 * @relates Piecewise */
Piecewise<SBasis> dot(Piecewise<D2<SBasis> > const &a, Piecewise<D2<SBasis> > const &b)
{
  Piecewise<SBasis > result;
  if (a.empty() || b.empty()) return result;
  Piecewise<D2<SBasis> > aa = partition(a,b.cuts);
  Piecewise<D2<SBasis> > bb = partition(b,a.cuts);

  result.push_cut(aa.cuts.front());
  for (unsigned i=0; i<aa.size(); i++){
    result.push(dot(aa.segs[i],bb.segs[i]),aa.cuts[i+1]);
  }
  return result;
}

/** @brief Calculates the 'dot product' or 'inner product' of \c a and \c b
 * @return  \f[
 *      f(t) \rightarrow \left\{ 
 *      \begin{array}{c}
 *      a_1 \bullet b \\
 *      a_2 \bullet b \\
 *      \ldots \\
 *      a_n \bullet b \\
 *      \end{array}\right.
 * \f]
 * @relates Piecewise */
Piecewise<SBasis> dot(Piecewise<D2<SBasis> > const &a, Point const &b)
{
  Piecewise<SBasis > result;
  if (a.empty()) return result;

  result.push_cut(a.cuts.front());
  for (unsigned i = 0; i < a.size(); ++i){
    result.push(dot(a.segs[i],b), a.cuts[i+1]);
  }
  return result;
}


Piecewise<SBasis> cross(Piecewise<D2<SBasis> > const &a, 
			Piecewise<D2<SBasis> > const &b){
  Piecewise<SBasis > result;
  if (a.empty() || b.empty()) return result;
  Piecewise<D2<SBasis> > aa = partition(a,b.cuts);
  Piecewise<D2<SBasis> > bb = partition(b,a.cuts);

  result.push_cut(aa.cuts.front());
  for (unsigned i=0; i<a.size(); i++){
    result.push(cross(aa.segs[i],bb.segs[i]),aa.cuts[i+1]);
  }
  return result;
}

Piecewise<D2<SBasis> > operator*(Piecewise<D2<SBasis> > const &a, Affine const &m) {
  Piecewise<D2<SBasis> > result;
  if(a.empty()) return result;
  result.push_cut(a.cuts[0]);
  for (unsigned i = 0; i < a.size(); i++) {
    result.push(a[i] * m, a.cuts[i+1]);
  }
  return result;
}

//if tol>0, only force continuity where the jump is smaller than tol.
Piecewise<D2<SBasis> > force_continuity(Piecewise<D2<SBasis> > const &f, double tol, bool closed)
{
    if (f.size()==0) return f;
    Piecewise<D2<SBasis> > result=f;
    unsigned cur   = (closed)? 0:1;
    unsigned prev  = (closed)? f.size()-1:0;
    while(cur<f.size()){
        Point pt0 = f.segs[prev].at1();
        Point pt1 = f.segs[cur ].at0();
        if (tol<=0 || L2sq(pt0-pt1)<tol*tol){
            pt0 = (pt0+pt1)/2;
            for (unsigned dim=0; dim<2; dim++){
                SBasis &prev_sb=result.segs[prev][dim];
                SBasis &cur_sb =result.segs[cur][dim];
                Coord const c=pt0[dim];
                if (prev_sb.isZero(0)) {
                  prev_sb = SBasis(Linear(0.0, c));
                } else {
                  prev_sb[0][1] = c;
                }
                if (cur_sb.isZero(0)) {
                  cur_sb = SBasis(Linear(c, 0.0));
                } else {
                  cur_sb[0][0] = c;
                }
            }
        }
        prev = cur++;
    }
    return result;
}

std::vector<Geom::Piecewise<Geom::D2<Geom::SBasis> > > 
split_at_discontinuities (Geom::Piecewise<Geom::D2<Geom::SBasis> > const & pwsbin, double tol)
{
    using namespace Geom;
    std::vector<Piecewise<D2<SBasis> > > ret;
    unsigned piece_start = 0;
    for (unsigned i=0; i<pwsbin.segs.size(); i++){
        if (i==(pwsbin.segs.size()-1) || L2(pwsbin.segs[i].at1()- pwsbin.segs[i+1].at0()) > tol){
            Piecewise<D2<SBasis> > piece;
            piece.cuts.push_back(pwsbin.cuts[piece_start]);
            for (unsigned j = piece_start; j<i+1; j++){
                piece.segs.push_back(pwsbin.segs[j]);
                piece.cuts.push_back(pwsbin.cuts[j+1]);
            }
            ret.push_back(piece);
            piece_start = i+1;
        }
    }
    return ret;
}

Point unitTangentAt(D2<SBasis> const & a, Coord t, unsigned n)
{
    std::vector<Point> derivs = a.valueAndDerivatives(t, n);
    for (unsigned deriv_n = 1; deriv_n < derivs.size(); deriv_n++) {
        Coord length = derivs[deriv_n].length();
        if ( ! are_near(length, 0) ) {
            // length of derivative is non-zero, so return unit vector
            return derivs[deriv_n] / length;
        }
    }
    return Point (0,0);
}

static void set_first_point(Piecewise<D2<SBasis> > &f, Point const &a){
    if ( f.empty() ){
        f.concat(Piecewise<D2<SBasis> >(D2<SBasis>(SBasis(Linear(a[X])), SBasis(Linear(a[Y])))));
        return;
    }
    for (unsigned dim=0; dim<2; dim++){
        f.segs.front()[dim][0][0] = a[dim];
    }
}
static void set_last_point(Piecewise<D2<SBasis> > &f, Point const &a){
    if ( f.empty() ){
        f.concat(Piecewise<D2<SBasis> >(D2<SBasis>(SBasis(Linear(a[X])), SBasis(Linear(a[Y])))));
        return;
    }
    for (unsigned dim=0; dim<2; dim++){
        f.segs.back()[dim][0][1] = a[dim];
    }
}

std::vector<Piecewise<D2<SBasis> > > fuse_nearby_ends(std::vector<Piecewise<D2<SBasis> > > const &f, double tol){

    if ( f.empty()) return f;
    std::vector<Piecewise<D2<SBasis> > > result;
    std::vector<std::vector<unsigned> > pre_result;
    for (unsigned i=0; i<f.size(); i++){
        bool inserted = false;
        Point a = f[i].firstValue();
        Point b = f[i].lastValue();
        for (auto & j : pre_result){
            Point aj = f.at(j.back()).lastValue();
            Point bj = f.at(j.front()).firstValue();
            if ( L2(a-aj) < tol ) {
                j.push_back(i);
                inserted = true;
                break;
            }
            if ( L2(b-bj) < tol ) {
                j.insert(j.begin(),i);
                inserted = true;
                break;
            }
        }
        if (!inserted) {
            pre_result.emplace_back();
            pre_result.back().push_back(i);
        }
    }
    for (auto & i : pre_result){
        Piecewise<D2<SBasis> > comp;
        for (unsigned j=0; j<i.size(); j++){
            Piecewise<D2<SBasis> > new_comp = f.at(i[j]);
            if ( j>0 ){
                set_first_point( new_comp, comp.segs.back().at1() );
            }
            comp.concat(new_comp);
        }
        if ( L2(comp.firstValue()-comp.lastValue()) < tol ){
            //TODO: check sizes!!!
            set_last_point( comp, comp.segs.front().at0() ); 
        }
        result.push_back(comp);
    }
    return result;
}

/*
 *  Computes the intersection of two sets given as (ordered) union of intervals.
 */
static std::vector<Interval> intersect( std::vector<Interval> const &a, std::vector<Interval> const &b){
	std::vector<Interval> result;
	//TODO: use order!
	for (auto i : a){
		for (auto j : b){
			OptInterval c( i );
			c &= j;
			if ( c ) {
				result.push_back( *c );
			}
		}
	}
	return result;
}

std::vector<Interval> level_set( D2<SBasis> const &f, Rect region){
	std::vector<Rect> regions( 1, region );
	return level_sets( f, regions ).front();
}
std::vector<Interval> level_set( D2<SBasis> const &f, Point p, double tol){
	Rect region(p, p);
	region.expandBy( tol );
	return level_set( f, region );
}
std::vector<std::vector<Interval> > level_sets( D2<SBasis> const &f, std::vector<Rect> regions){
	std::vector<Interval> regsX (regions.size(), Interval() );
	std::vector<Interval> regsY (regions.size(), Interval() );
	for ( unsigned i=0; i < regions.size(); i++ ){
		regsX[i] = regions[i][X];
		regsY[i] = regions[i][Y];
	}
	std::vector<std::vector<Interval> > x_in_regs = level_sets( f[X], regsX );
	std::vector<std::vector<Interval> > y_in_regs = level_sets( f[Y], regsY );
	std::vector<std::vector<Interval> >result(regions.size(), std::vector<Interval>() );
	for (unsigned i=0; i<regions.size(); i++){
		result[i] = intersect ( x_in_regs[i], y_in_regs[i] );
	}
	return result;
}
std::vector<std::vector<Interval> > level_sets( D2<SBasis> const &f, std::vector<Point> pts, double tol){
	std::vector<Rect> regions( pts.size(), Rect() );
	for (unsigned i=0; i<pts.size(); i++){
		regions[i] = Rect( pts[i], pts[i] );
		regions[i].expandBy( tol );
	}
	return level_sets( f, regions );
}


}  // namespace Geom


/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :