summaryrefslogtreecommitdiffstats
path: root/src/2geom/nearest-time.cpp
blob: e52251cecb6ddabdb40a8d76abd98e436f32d9cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/** @file
 * @brief Nearest time routines for D2<SBasis> and Piecewise<D2<SBasis>>
 *//*
 * Authors:
 *   Marco Cecchetti <mrcekets at gmail.com>
 *
 * Copyright 2007-2008  authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */


#include <2geom/nearest-time.h>
#include <algorithm>

namespace Geom
{

Coord nearest_time(Point const &p, D2<Bezier> const &input, Coord from, Coord to)
{
    Interval domain(from, to);
    bool partial = false;

    if (domain.min() < 0 || domain.max() > 1) {
        THROW_RANGEERROR("[from,to] interval out of bounds");
    }

    if (input.isConstant(0)) return from;

    D2<Bezier> bez;
    if (domain.min() != 0 || domain.max() != 1) {
        bez = portion(input, domain) - p;
        partial = true;
    } else {
        bez = input - p;
    }

    // find extrema of the function x(t)^2 + y(t)^2
    // use the fact that (f^2)' = 2 f f'
    // this reduces the order of the distance function by 1
    D2<Bezier> deriv = derivative(bez);
    std::vector<Coord> ts = (multiply(bez[X], deriv[X]) + multiply(bez[Y], deriv[Y])).roots();

    Coord t = -1, mind = infinity();
    for (double i : ts) {
        Coord droot = L2sq(bez.valueAt(i));
        if (droot < mind) {
            mind = droot;
            t = i;
        }
    }

    // also check endpoints
    Coord dinitial = L2sq(bez.at0());
    Coord dfinal = L2sq(bez.at1());

    if (dinitial < mind) {
        mind = dinitial;
        t = 0;
    }
    if (dfinal < mind) {
        //mind = dfinal;
        t = 1;
    }

    if (partial) {
        t = domain.valueAt(t);
    }
    return t;
}

////////////////////////////////////////////////////////////////////////////////
// D2<SBasis> versions

/*
 * Return the parameter t of the nearest time value on the portion of the curve "c",
 * related to the interval [from, to], to the point "p".
 * The needed curve derivative "dc" is passed as parameter.
 * The function return the first nearest time value to "p" that is found.
 */

double nearest_time(Point const& p,
                    D2<SBasis> const& c,
                    D2<SBasis> const& dc,
                    double from, double to )
{
    if ( from > to ) std::swap(from, to);
    if ( from < 0 || to > 1 )
    {
        THROW_RANGEERROR("[from,to] interval out of bounds");
    }
    if (c.isConstant()) return from;
    SBasis dd = dot(c - p, dc);
    //std::cout << dd << std::endl;
    std::vector<double> zeros = Geom::roots(dd);

    double closest = from;
    double min_dist_sq = L2sq(c(from) - p);
    for (double zero : zeros)
    {
        double distsq = L2sq(c(zero) - p);
        if ( min_dist_sq > L2sq(c(zero) - p) )
        {
            closest = zero;
            min_dist_sq = distsq;
        }
    }
    if ( min_dist_sq > L2sq( c(to) - p ) )
        closest = to;
    return closest;

}

/*
 * Return the parameters t of all the nearest points on the portion of
 * the curve "c", related to the interval [from, to], to the point "p".
 * The needed curve derivative "dc" is passed as parameter.
 */

std::vector<double>
all_nearest_times(Point const &p,
                  D2<SBasis> const &c,
                  D2<SBasis> const &dc,
                  double from, double to)
{
    if (from > to) {
        std::swap(from, to);
    }
    if (from < 0 || to > 1) {
        THROW_RANGEERROR("[from,to] interval out of bounds");
    }

    std::vector<double> result;
    if (c.isConstant()) {
        result.push_back(from);
        return result;
    }
    SBasis dd = dot(c - p, dc);

    std::vector<double> zeros = Geom::roots(dd);
    std::vector<double> candidates;
    candidates.push_back(from);
    candidates.insert(candidates.end(), zeros.begin(), zeros.end());
    candidates.push_back(to);
    std::vector<double> distsq;
    distsq.reserve(candidates.size());
    for (double candidate : candidates) {
        distsq.push_back(L2sq(c(candidate) - p));
    }
    unsigned closest = 0;
    double dsq = distsq[0];
    for (unsigned i = 1; i < candidates.size(); ++i) {
        if (dsq > distsq[i]) {
            closest = i;
            dsq = distsq[i];
        }
    }
    for (unsigned i = 0; i < candidates.size(); ++i) {
        if (distsq[closest] == distsq[i]) {
            result.push_back(candidates[i]);
        }
    }
    return result;
}


////////////////////////////////////////////////////////////////////////////////
// Piecewise< D2<SBasis> > versions


double nearest_time(Point const &p,
                    Piecewise< D2<SBasis> > const &c,
                    double from, double to)
{
    if (from > to) std::swap(from, to);
    if (from < c.cuts[0] || to > c.cuts[c.size()]) {
        THROW_RANGEERROR("[from,to] interval out of bounds");
    }

    unsigned si = c.segN(from);
    unsigned ei = c.segN(to);
    if (si == ei) {
        double nearest =
            nearest_time(p, c[si], c.segT(from, si), c.segT(to, si));
        return c.mapToDomain(nearest, si);
    }

    double t;
    double nearest = nearest_time(p, c[si], c.segT(from, si));
    unsigned int ni = si;
    double dsq;
    double mindistsq = distanceSq(p, c[si](nearest));
    Rect bb;
    for (unsigned i = si + 1; i < ei; ++i) {
        bb = *bounds_fast(c[i]);
        dsq = distanceSq(p, bb);
        if ( mindistsq <= dsq ) continue;

        t = nearest_time(p, c[i]);
        dsq = distanceSq(p, c[i](t));
        if (mindistsq > dsq) {
            nearest = t;
            ni = i;
            mindistsq = dsq;
        }
    }
    bb = *bounds_fast(c[ei]);
    dsq = distanceSq(p, bb);
    if (mindistsq > dsq) {
        t = nearest_time(p, c[ei], 0, c.segT(to, ei));
        dsq = distanceSq(p, c[ei](t));
        if (mindistsq > dsq) {
            nearest = t;
            ni = ei;
        }
    }
    return c.mapToDomain(nearest, ni);
}

std::vector<double>
all_nearest_times(Point const &p,
                  Piecewise< D2<SBasis> > const &c,
                  double from, double to)
{
    if (from > to) {
        std::swap(from, to);
    }
    if (from < c.cuts[0] || to > c.cuts[c.size()]) {
        THROW_RANGEERROR("[from,to] interval out of bounds");
    }

    unsigned si = c.segN(from);
    unsigned ei = c.segN(to);
    if ( si == ei )
    {
        std::vector<double>	all_nearest =
            all_nearest_times(p, c[si], c.segT(from, si), c.segT(to, si));
        for (double & i : all_nearest)
        {
            i = c.mapToDomain(i, si);
        }
        return all_nearest;
    }
    std::vector<double> all_t;
    std::vector< std::vector<double> > all_np;
    all_np.push_back( all_nearest_times(p, c[si], c.segT(from, si)) );
    std::vector<unsigned> ni;
    ni.push_back(si);
    double dsq;
    double mindistsq = distanceSq( p, c[si](all_np.front().front()) );
    Rect bb;

    for (unsigned i = si + 1; i < ei; ++i) {
        bb = *bounds_fast(c[i]);
        dsq = distanceSq(p, bb);
        if ( mindistsq < dsq ) continue;
        all_t = all_nearest_times(p, c[i]);
        dsq = distanceSq( p, c[i](all_t.front()) );
        if ( mindistsq > dsq )
        {
            all_np.clear();
            all_np.push_back(all_t);
            ni.clear();
            ni.push_back(i);
            mindistsq = dsq;
        }
        else if ( mindistsq == dsq )
        {
            all_np.push_back(all_t);
            ni.push_back(i);
        }
    }
    bb = *bounds_fast(c[ei]);
    dsq = distanceSq(p, bb);
    if (mindistsq >= dsq) {
        all_t = all_nearest_times(p, c[ei], 0, c.segT(to, ei));
        dsq = distanceSq( p, c[ei](all_t.front()) );
        if (mindistsq > dsq) {
            for (double & i : all_t) {
                i = c.mapToDomain(i, ei);
            }
            return all_t;
        } else if (mindistsq == dsq) {
            all_np.push_back(all_t);
            ni.push_back(ei);
        }
    }
    std::vector<double> all_nearest;
    for (unsigned i = 0; i < all_np.size(); ++i) {
        for (unsigned int j = 0; j < all_np[i].size(); ++j) {
            all_nearest.push_back( c.mapToDomain(all_np[i][j], ni[i]) );
        }
    }
    all_nearest.erase(std::unique(all_nearest.begin(), all_nearest.end()),
                      all_nearest.end());
    return all_nearest;
}

} // end namespace Geom