1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
/* Axis-aligned rectangle
*
* Authors:
* Michael Sloan <mgsloan@gmail.com>
* Krzysztof Kosiński <tweenk.pl@gmail.com>
* Copyright 2007-2011 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <2geom/rect.h>
#include <2geom/transforms.h>
namespace Geom {
Point align_factors(Align g) {
Point p;
switch (g) {
case ALIGN_XMIN_YMIN:
p[X] = 0.0;
p[Y] = 0.0;
break;
case ALIGN_XMID_YMIN:
p[X] = 0.5;
p[Y] = 0.0;
break;
case ALIGN_XMAX_YMIN:
p[X] = 1.0;
p[Y] = 0.0;
break;
case ALIGN_XMIN_YMID:
p[X] = 0.0;
p[Y] = 0.5;
break;
case ALIGN_XMID_YMID:
p[X] = 0.5;
p[Y] = 0.5;
break;
case ALIGN_XMAX_YMID:
p[X] = 1.0;
p[Y] = 0.5;
break;
case ALIGN_XMIN_YMAX:
p[X] = 0.0;
p[Y] = 1.0;
break;
case ALIGN_XMID_YMAX:
p[X] = 0.5;
p[Y] = 1.0;
break;
case ALIGN_XMAX_YMAX:
p[X] = 1.0;
p[Y] = 1.0;
break;
default:
break;
}
return p;
}
/** @brief Transform the rectangle by an affine.
* The result of the transformation might not be axis-aligned. The return value
* of this operation will be the smallest axis-aligned rectangle containing
* all points of the true result. */
Rect &Rect::operator*=(Affine const &m) {
Point pts[4];
for (unsigned i=0; i<4; ++i) pts[i] = corner(i) * m;
Coord minx = std::min(std::min(pts[0][X], pts[1][X]), std::min(pts[2][X], pts[3][X]));
Coord miny = std::min(std::min(pts[0][Y], pts[1][Y]), std::min(pts[2][Y], pts[3][Y]));
Coord maxx = std::max(std::max(pts[0][X], pts[1][X]), std::max(pts[2][X], pts[3][X]));
Coord maxy = std::max(std::max(pts[0][Y], pts[1][Y]), std::max(pts[2][Y], pts[3][Y]));
f[X].setMin(minx); f[X].setMax(maxx);
f[Y].setMin(miny); f[Y].setMax(maxy);
return *this;
}
Affine Rect::transformTo(Rect const &viewport, Aspect const &aspect) const
{
// 1. translate viewbox to origin
Geom::Affine total = Translate(-min());
// 2. compute scale
Geom::Point vdims = viewport.dimensions();
Geom::Point dims = dimensions();
Geom::Scale scale(vdims[X] / dims[X], vdims[Y] / dims[Y]);
if (aspect.align == ALIGN_NONE) {
// apply non-uniform scale
total *= scale * Translate(viewport.min());
} else {
double uscale = 0;
if (aspect.expansion == EXPANSION_MEET) {
uscale = std::min(scale[X], scale[Y]);
} else {
uscale = std::max(scale[X], scale[Y]);
}
scale = Scale(uscale);
// compute offset for align
Geom::Point offset = vdims - dims * scale;
offset *= Scale(align_factors(aspect.align));
total *= scale * Translate(viewport.min() + offset);
}
return total;
}
Coord distanceSq(Point const &p, Rect const &rect)
{
double dx = 0, dy = 0;
if ( p[X] < rect.left() ) {
dx = p[X] - rect.left();
} else if ( p[X] > rect.right() ) {
dx = rect.right() - p[X];
}
if (p[Y] < rect.top() ) {
dy = rect.top() - p[Y];
} else if ( p[Y] > rect.bottom() ) {
dy = p[Y] - rect.bottom();
}
return dx*dx+dy*dy;
}
/** @brief Returns the smallest distance between p and rect.
* @relates Rect */
Coord distance(Point const &p, Rect const &rect)
{
// copy of distanceSq, because we need to use hypot()
double dx = 0, dy = 0;
if ( p[X] < rect.left() ) {
dx = p[X] - rect.left();
} else if ( p[X] > rect.right() ) {
dx = rect.right() - p[X];
}
if (p[Y] < rect.top() ) {
dy = rect.top() - p[Y];
} else if ( p[Y] > rect.bottom() ) {
dy = p[Y] - rect.bottom();
}
return hypot(dx, dy);
}
Coord distanceSq(Point const &p, OptRect const &rect)
{
if (!rect) return std::numeric_limits<Coord>::max();
return distanceSq(p, *rect);
}
Coord distance(Point const &p, OptRect const &rect)
{
if (!rect) return std::numeric_limits<Coord>::max();
return distance(p, *rect);
}
} // namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|