1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
#include <2geom/solver.h>
#include <2geom/choose.h>
#include <2geom/bezier.h>
#include <2geom/point.h>
#include <cmath>
#include <algorithm>
/*** Find the zeros of a Bezier. The code subdivides until it is happy with the linearity of the
* function. This requires an O(degree^2) subdivision for each step, even when there is only one
* solution.
*
* We try fairly hard to correctly handle multiple roots.
*/
//#define debug(x) do{x;}while(0)
#define debug(x)
namespace Geom{
template<class t>
static int SGN(t x) { return (x > 0 ? 1 : (x < 0 ? -1 : 0)); }
class Bernsteins{
public:
static const size_t MAX_DEPTH = 22;
std::vector<double> &solutions;
//std::vector<double> dsolutions;
Bernsteins(std::vector<double> & sol)
: solutions(sol)
{}
void subdivide(double const *V,
double t,
double *Left,
double *Right);
double secant(Bezier const &bz);
void find_bernstein_roots(Bezier const &bz, unsigned depth,
double left_t, double right_t);
};
template <typename T>
inline std::ostream &operator<< (std::ostream &out_file, const std::vector<T> & b) {
out_file << "[";
for(unsigned i = 0; i < b.size(); i++) {
out_file << b[i] << ", ";
}
return out_file << "]";
}
void convex_hull_marching(Bezier const &src_bz, Bezier bz,
std::vector<double> &solutions,
double left_t,
double right_t)
{
while(bz.order() > 0 && bz[0] == 0) {
std::cout << "deflate\n";
bz = bz.deflate();
solutions.push_back(left_t);
}
std::cout << std::endl;
if (bz.order() > 0) {
int old_sign = SGN(bz[0]);
double left_bound = 0;
double dt = 0;
for (size_t i = 1; i < bz.size(); i++)
{
int sign = SGN(bz[i]);
if (sign != old_sign)
{
dt = double(i) / bz.order();
left_bound = dt * bz[0] / (bz[0] - bz[i]);
break;
}
old_sign = sign;
}
if (dt == 0) return;
std::cout << bz << std::endl;
std::cout << "dt = " << dt << std::endl;
std::cout << "left_t = " << left_t << std::endl;
std::cout << "right_t = " << right_t << std::endl;
std::cout << "left bound = " << left_bound
<< " = " << bz(left_bound) << std::endl;
double new_left_t = left_bound * (right_t - left_t) + left_t;
std::cout << "new_left_t = " << new_left_t << std::endl;
Bezier bzr = portion(src_bz, new_left_t, 1);
while(bzr.order() > 0 && bzr[0] == 0) {
std::cout << "deflate\n";
bzr = bzr.deflate();
solutions.push_back(new_left_t);
}
if (left_t < new_left_t) {
convex_hull_marching(src_bz, bzr,
solutions,
new_left_t, right_t);
} else {
std::cout << "epsilon reached\n";
while(bzr.order() > 0 && fabs(bzr[0]) <= 1e-10) {
std::cout << "deflate\n";
bzr = bzr.deflate();
std::cout << bzr << std::endl;
solutions.push_back(new_left_t);
}
}
}
}
void
Bezier::find_bezier_roots(std::vector<double> &solutions,
double left_t, double right_t) const {
Bezier bz = *this;
//convex_hull_marching(bz, bz, solutions, left_t, right_t);
//return;
// a constant bezier, even if identically zero, has no roots
if (bz.isConstant()) {
return;
}
while(bz[0] == 0) {
debug(std::cout << "deflate\n");
bz = bz.deflate();
solutions.push_back(0);
}
if (bz.degree() == 1) {
debug(std::cout << "linear\n");
if (SGN(bz[0]) != SGN(bz[1])) {
double d = bz[0] - bz[1];
if(d != 0) {
double r = bz[0] / d;
if(0 <= r && r <= 1)
solutions.push_back(r);
}
}
return;
}
//std::cout << "initial = " << bz << std::endl;
Bernsteins B(solutions);
B.find_bernstein_roots(bz, 0, left_t, right_t);
//std::cout << solutions << std::endl;
}
void Bernsteins::find_bernstein_roots(Bezier const &bz,
unsigned depth,
double left_t,
double right_t)
{
debug(std::cout << left_t << ", " << right_t << std::endl);
size_t n_crossings = 0;
int old_sign = SGN(bz[0]);
//std::cout << "w[0] = " << bz[0] << std::endl;
for (size_t i = 1; i < bz.size(); i++)
{
//std::cout << "w[" << i << "] = " << w[i] << std::endl;
int sign = SGN(bz[i]);
if (sign != 0)
{
if (sign != old_sign && old_sign != 0)
{
++n_crossings;
}
old_sign = sign;
}
}
// if last control point is zero, that counts as crossing too
if (SGN(bz[bz.size()-1]) == 0) {
++n_crossings;
}
//std::cout << "n_crossings = " << n_crossings << std::endl;
if (n_crossings == 0) return; // no solutions here
if (n_crossings == 1) /* Unique solution */
{
//std::cout << "depth = " << depth << std::endl;
/* Stop recursion when the tree is deep enough */
/* if deep enough, return 1 solution at midpoint */
if (depth > MAX_DEPTH)
{
//printf("bottom out %d\n", depth);
const double Ax = right_t - left_t;
const double Ay = bz.at1() - bz.at0();
solutions.push_back(left_t - Ax*bz.at0() / Ay);
return;
}
double r = secant(bz);
solutions.push_back(r*right_t + (1-r)*left_t);
return;
}
/* Otherwise, solve recursively after subdividing control polygon */
Bezier::Order o(bz);
Bezier Left(o), Right = bz;
double split_t = (left_t + right_t) * 0.5;
// If subdivision is working poorly, split around the leftmost root of the derivative
if (depth > 2) {
debug(std::cout << "derivative mode\n");
Bezier dbz = derivative(bz);
debug(std::cout << "initial = " << dbz << std::endl);
std::vector<double> dsolutions = dbz.roots(Interval(left_t, right_t));
debug(std::cout << "dsolutions = " << dsolutions << std::endl);
double dsplit_t = 0.5;
if(!dsolutions.empty()) {
dsplit_t = dsolutions[0];
split_t = left_t + (right_t - left_t)*dsplit_t;
debug(std::cout << "split_value = " << bz(split_t) << std::endl);
debug(std::cout << "splitting around " << dsplit_t << " = "
<< split_t << "\n");
}
std::pair<Bezier, Bezier> LR = bz.subdivide(dsplit_t);
Left = LR.first;
Right = LR.second;
} else {
// split at midpoint, because it is cheap
Left[0] = Right[0];
for (size_t i = 1; i < bz.size(); ++i)
{
for (size_t j = 0; j < bz.size()-i; ++j)
{
Right[j] = (Right[j] + Right[j+1]) * 0.5;
}
Left[i] = Right[0];
}
}
debug(std::cout << "Solution is exactly on the subdivision point.\n");
debug(std::cout << Left << " , " << Right << std::endl);
Left = reverse(Left);
while(Right.order() > 0 && fabs(Right[0]) <= 1e-10) {
debug(std::cout << "deflate\n");
Right = Right.deflate();
Left = Left.deflate();
solutions.push_back(split_t);
}
Left = reverse(Left);
if (Right.order() > 0) {
debug(std::cout << Left << " , " << Right << std::endl);
find_bernstein_roots(Left, depth+1, left_t, split_t);
find_bernstein_roots(Right, depth+1, split_t, right_t);
}
}
double Bernsteins::secant(Bezier const &bz) {
double s = 0, t = 1;
double e = 1e-14;
int side = 0;
double r, fs = bz.at0(), ft = bz.at1();
for (size_t n = 0; n < 100; ++n)
{
r = (fs*t - ft*s) / (fs - ft);
if (fabs(t-s) < e * fabs(t+s)) {
debug(std::cout << "error small " << fabs(t-s)
<< ", accepting solution " << r
<< "after " << n << "iterations\n");
return r;
}
double fr = bz.valueAt(r);
if (fr * ft > 0)
{
t = r; ft = fr;
if (side == -1) fs /= 2;
side = -1;
}
else if (fs * fr > 0)
{
s = r; fs = fr;
if (side == +1) ft /= 2;
side = +1;
}
else break;
}
return r;
}
};
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|