1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
|
/*
* curve-curve distance
*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <2geom/d2.h>
#include <2geom/sbasis.h>
#include <2geom/path.h>
#include <2geom/angle.h>
#include <2geom/bezier-to-sbasis.h>
#include <2geom/sbasis-geometric.h>
#include <2geom/piecewise.h>
#include <toys/path-cairo.h>
#include <toys/toy-framework-2.h>
#include <2geom/nearest-time.h>
#include <2geom/numeric/linear_system.h>
#include <algorithm>
namespace Geom
{
namespace detail
{
// this wrapper class is an helper to make up a curve portion and access it
// in an homogeneous way
template< typename Curve01T >
class CurvePortion
{
public:
CurvePortion(const Curve & curve, double from, double to)
: m_curve_ptr(curve.portion(from, to))
{
}
Curve01T & get_curve()
{
return *( static_cast<Curve01T*>(m_curve_ptr) );
}
~CurvePortion()
{
if (m_curve_ptr != NULL)
delete m_curve_ptr;
}
private:
Curve* m_curve_ptr;
};
template<>
class CurvePortion< D2<SBasis> >
{
public:
CurvePortion< D2<SBasis> >(const D2<SBasis> & curve, double from, double to)
: m_curve(portion(curve, from, to))
{
}
D2<SBasis> & get_curve()
{
return m_curve;
}
private:
D2<SBasis> m_curve;
};
template< typename Curve01T, typename CurveT >
class distance_impl
{
typedef Curve01T curveA_type;
typedef CurveT curveB_type;
// determine how near a distance sample and the value computed through
// the interpolated function have to be
double accuracy;
// determine the recursion limit
double adaptive_limit;
// pieces of the initial subdivision
unsigned int piecees;
// degree of the polynomial used to interpolate a piece
unsigned int piece_degree;
// number of coefficients = piece_degree + 1
unsigned int piece_size;
unsigned int samples_per_piece;
// total initial samples
unsigned int N;
// a junction is a part of the previous or of the next piece
unsigned int samples_per_junction;
unsigned int samples_per_2junctions;
// number of distance samples used in the interpolation (in the general case)
unsigned int samples_per_interpolation;
// distance between two consecutive parameters at which samples are evaluated
double step;
double half_step;
// length of the initial domain interval of a piece
double piece_step;
// length of the interval related to a junction
double junction_step;
// index of the first sample related to a piece
unsigned int interval_si;
// index of the last sample related to a piece
unsigned int interval_ei;
// index of the first sample to be evaluated for the current piece
unsigned int evaluation_si;
// index of the last sample to be evaluated for the current piece
unsigned int evaluation_ei;
// index of the first sample to be used for interpolating the current piece
unsigned int interpolation_si;
// index of the last sample to be used for interpolating the current piece
unsigned int interpolation_ei;
// number of total samples to be used for interpolating the current piece
// this is equal to samples_per_interpolation except for the first and last
// piece
unsigned int interpolation_samples;
// parameter value for the first sample related to the current piece
double interval_st;
// interval_st + piece_step
double interval_et;
// curve piece start t
double portion_st;
// curve piece end t
double portion_et;
unsigned int rec_pieces;
unsigned int rec_N;
unsigned int shared_si;
unsigned int shared_ei;
double rec_step;
double rec_half_step;
double rec_piece_step;
double rec_piece_2steps;
unsigned int rec_total_samples;
void init()
{
piece_degree = 3;
piece_size = piece_degree + 1;
samples_per_piece = 4;
N = piecees * samples_per_piece;
samples_per_junction = 2;
samples_per_2junctions = 2*samples_per_junction;
samples_per_interpolation
= samples_per_piece + samples_per_2junctions;
step = 1.0 / N;
half_step = step / 2;
piece_step = samples_per_piece * step;
junction_step = samples_per_junction * step;
interval_si = samples_per_junction;
interval_ei = interval_si + samples_per_piece;
portion_st = (double)(samples_per_junction) / samples_per_interpolation;
portion_et = portion_st
+ (double)(samples_per_piece) / samples_per_interpolation;
// recursive routine parameters
rec_pieces = 2;
rec_N = rec_pieces * samples_per_piece;
rec_total_samples = 2 * samples_per_piece + 1;
shared_si = samples_per_piece - samples_per_junction;
shared_ei = samples_per_piece + samples_per_junction;
rec_step = 1.0 / rec_N;
rec_half_step = rec_step / 2;
rec_piece_step = samples_per_piece * rec_step;
rec_piece_2steps = 2 * rec_piece_step;
}
bool check_accuracy( SBasis const& piece,
NL::Vector const& sample_distances,
double step )
{
double t = 0;
for (unsigned int i = 0; i < sample_distances.size(); ++i)
{
if ( !are_near(piece(t), sample_distances[i], accuracy) )
{
return false;
}
t += step;
}
return true;
}
void append( Piecewise<SBasis> & pwc,
Piecewise<SBasis> const& spwc,
double interval_st,
double interval_length )
{
double cut;
for (unsigned int i = 0; i < spwc.size(); ++i)
{
cut = interval_st + spwc.cuts[i+1] * interval_length;
pwc.push(spwc.segs[i], cut);
}
}
void init_power_matrix(NL::Matrix & power_matrix)
{
double t = 0;
double u0, u1, s;
unsigned int half_rows = power_matrix.rows() / 2;
unsigned int n = power_matrix.rows() - 1;
for (unsigned int i0 = 0, i1 = n; i0 < half_rows; ++i0, --i1)
{
u0 = 1-t;
u1 = t;
s = u0 * u1;
for (unsigned int j = 0; j < piece_size; j+=2)
{
power_matrix(i0, j) = u0;
power_matrix(i0, j+1) = u1;
power_matrix(i1, j) = u1;
power_matrix(i1, j+1) = u0;
u0 *= s;
u1 *= s;
}
t += rec_step;
}
// t = 1/2
assert( are_near(t, 0.5) );
u1 = 1/2.0;
s = 1/4.0;
for (unsigned int j = 0; j < piece_size; j+=2)
{
power_matrix(half_rows, j) = u1;
power_matrix(half_rows, j+1) = u1;
u1 *= s;
}
}
void interpolate( SBasis & piece,
NL::Matrix & psdinv_matrix,
NL::Vector & sample_distances,
double interpolation_si, double interpolation_samples,
double _portion_st, double _portion_et )
{
piece.resize(2);
NL::VectorView v( sample_distances,
interpolation_samples,
interpolation_si );
NL::Vector coeff = psdinv_matrix * v;
for (unsigned int i = 0, k = 0; i < piece_size; i+=2, ++k)
{
piece[k][0] = coeff[i];
piece[k][1] = coeff[i+1];
}
piece = portion(piece, _portion_st, _portion_et);
}
void evaluate_samples( curveA_type const& A,
curveB_type const& B,
NL::Vector & sample_distances,
double& t )
{
Point At;
double nptime;
for (unsigned int i = evaluation_si; i < evaluation_ei; ++i)
{
At = A(t);
nptime = nearest_time(At, B);
sample_distances[i] = distance(At, B(nptime));
t += step;
}
}
void evaluate_piece_rec( Piecewise<SBasis> & pwc,
curveA_type const& A,
curveB_type const& B,
NL::Matrix & psdinv_matrix,
NL::Matrix & fpi_matrix,
NL::Matrix & lpi_matrix,
NL::Vector & curr_vector,
NL::Vector & sample_distances,
bool adaptive,
double _interpolation_si,
double _interpolation_ei,
double _interval_st,
double _interval_et,
double half_real_step )
{
SBasis piece;
double _interpolation_samples = _interpolation_ei - _interpolation_si;
interpolate( piece, psdinv_matrix, curr_vector,
_interpolation_si, _interpolation_samples,
_interval_st, _interval_et );
if (adaptive)
{
bool good
= check_accuracy( piece, sample_distances, rec_step );
if (!good)
{
Piecewise<SBasis> spwc;
CurvePortion<curveA_type> cp(A, _interval_st, _interval_et);
evaluate_rec( spwc,
cp.get_curve(),
B,
fpi_matrix,
lpi_matrix,
sample_distances,
half_real_step );
append(pwc, spwc, _interval_st, rec_piece_step);
}
else
{
pwc.push(piece, _interval_et);
}
}
else
{
pwc.push(piece, _interval_et);
}
}
// recursive routine: if the interpolated piece is accurate enough
// it's returned in the out-parameter pwc, otherwise the computation of
// two new piecees is performed using half of the current step so the
// number of samples per piece is always the same, while the interpolation
// of one piece is split into the computation of two new piecees when
// needed.
void evaluate_rec( Piecewise<SBasis> & pwc,
curveA_type const& A,
curveB_type const& B,
NL::Matrix & fpi_matrix,
NL::Matrix & lpi_matrix,
NL::Vector & sample_distances,
double real_step )
{
const double half_real_step = real_step / 2;
const bool adaptive = !(real_step < adaptive_limit);
static const unsigned int middle_sample_index = samples_per_piece + 1;
pwc.clear();
pwc.push_cut(0);
// sample_distances used to check accuracy and for the interpolation
// of the two sub-pieces when needed
NL::Vector sample_distances_1(rec_total_samples);
NL::Vector sample_distances_2(rec_total_samples);
// view of even indexes of sample_distances_1
NL::VectorView
sd1_view_0(sample_distances_1, middle_sample_index, 0, 2);
// view of even indexes of sample_distances_2
NL::VectorView
sd2_view_0(sample_distances_2, middle_sample_index, 0, 2);
// view of first half (+ 1) of sample_distances
NL::VectorView
sd_view_1(sample_distances, middle_sample_index, 0);
// view of second half of sample_distances
NL::VectorView
sd_view_2(sample_distances, middle_sample_index, samples_per_piece);
sd1_view_0 = sd_view_1;
sd2_view_0 = sd_view_2;
// if we have to check accuracy and go on with recursion
// we need to compute the distance samples of middle points
// of all current samples, because the new step is half of
// the current one
if (adaptive)
{
Point At;
double nptime;
double t = rec_half_step;
for (unsigned int i = 1; i < sample_distances.size(); i+=2)
{
At = A(t);
nptime = nearest_time(At, B);
sample_distances_1[i] = distance(At, B(nptime));
At = A(t + rec_piece_step);
nptime = nearest_time(At, B);
sample_distances_2[i] = distance(At, B(nptime));
t += rec_step;
}
}
// first piece
evaluate_piece_rec( pwc, A, B,
fpi_matrix,
fpi_matrix,
lpi_matrix,
sample_distances,
sample_distances_1,
adaptive,
0, // interpolation_si
shared_ei, // interpolation_ei
0, // portion_st
rec_piece_step, // portion_et
half_real_step );
// copy back junction parts because
// the interpolate routine modifies them
for ( unsigned int i = 0, j = samples_per_piece - 1;
i < samples_per_junction;
++i, --j )
{
sd_view_1[j] = sd1_view_0[j];
sd_view_2[i] = sd2_view_0[i];
}
// last piece
evaluate_piece_rec( pwc, A, B,
lpi_matrix,
fpi_matrix,
lpi_matrix,
sample_distances,
sample_distances_2,
adaptive,
shared_si, // interpolation_si
rec_total_samples, // interpolation_ei
rec_piece_step, // portion_st
rec_piece_2steps, // portion_et
half_real_step );
}
void evaluate_piece( Piecewise<SBasis> & pwc,
curveA_type const& A,
curveB_type const& B,
NL::Matrix & psdinv_matrix,
NL::Matrix & fpi_matrix,
NL::Matrix & lpi_matrix,
NL::Vector & curr_vector,
NL::Vector & sample_distances,
NL::Vector & end_junction,
NL::VectorView & start_junction_view,
NL::VectorView & end_junction_view,
double & t )
{
//static size_t index = 0;
//std::cerr << "index = " << index++ << std::endl;
bool good;
SBasis piece;
Piecewise<SBasis> spwc;
interval_et += piece_step;
//std::cerr << "interval: " << interval_st << ", " << interval_et << std::endl;
//std::cerr << "interpolation range: " << interpolation_si << ", " << interpolation_ei << std::endl;
//std::cerr << "interpolation samples = " << interpolation_samples << std::endl;
evaluate_samples( A, B, curr_vector, t );
//std::cerr << "current vector: " << curr_vector << std::endl;
for ( unsigned int i = 0, k = interval_si;
i < sample_distances.size();
i+=2, ++k )
{
sample_distances[i] = curr_vector[k];
}
Point At;
double nptime;
double tt = interval_st + half_step;
for (unsigned int i = 1; i < sample_distances.size(); i+=2)
{
At = A(tt);
nptime = nearest_time(At, B);
sample_distances[i] = distance(At, B(nptime));
tt += step;
}
//std::cerr << "sample_distances: " << sample_distances << std::endl;
end_junction = end_junction_view;
interpolate( piece, psdinv_matrix, curr_vector,
interpolation_si, interpolation_samples,
portion_st, portion_et );
good = check_accuracy( piece, sample_distances, rec_step );
//std::cerr << "good: " << good << std::endl;
//good = true;
if (!good)
{
CurvePortion<curveA_type> cp(A, interval_st, interval_et);
evaluate_rec( spwc,
cp.get_curve(),
B,
fpi_matrix,
lpi_matrix,
sample_distances,
half_step );
append(pwc, spwc, interval_st, piece_step);
}
else
{
pwc.push(piece, interval_et);
}
interval_st = interval_et;
for (unsigned int i = 0; i < samples_per_junction; ++i)
{
curr_vector[i] = start_junction_view[i];
curr_vector[samples_per_junction + i] = end_junction[i];
}
}
public:
void evaluate( Piecewise<SBasis> & pwc,
curveA_type const& A,
curveB_type const& B,
unsigned int _piecees )
{
piecees = _piecees;
init();
assert( !(piecees & 1) );
assert( !(piece_size & 1) );
assert( rec_total_samples & 1);
pwc.clear();
pwc.push_cut(0);
NL::Matrix power_matrix(rec_total_samples, piece_size);
init_power_matrix(power_matrix);
NL::MatrixView rec_fmv( power_matrix,
0, 0,
shared_ei, piece_size );
NL::Matrix rec_fpim = NL::pseudo_inverse(rec_fmv);
NL::MatrixView rec_lmv( power_matrix,
shared_si, 0,
rec_total_samples - shared_si, piece_size );
NL::Matrix rec_lpim = NL::pseudo_inverse(rec_lmv);
NL::Vector curr_vector(samples_per_interpolation);
NL::Vector sample_distances(rec_total_samples);
NL::Vector end_junction(samples_per_junction);
NL::VectorView start_junction_view(
sample_distances,
samples_per_junction,
rec_total_samples - 1 - samples_per_2junctions,
2 );
NL::VectorView end_junction_view(
curr_vector,
samples_per_junction,
samples_per_junction + samples_per_piece );
double t = 0;
// first piece
evaluation_si = interval_si;
evaluation_ei = samples_per_interpolation;
interpolation_si = evaluation_si;
interpolation_ei = evaluation_ei;
interpolation_samples = interpolation_ei - interpolation_si;
interval_st = 0;
interval_et = 0;
NL::MatrixView fmv( power_matrix,
interpolation_si, 0,
interpolation_samples, piece_size );
NL::Matrix fpim = NL::pseudo_inverse(fmv);
evaluate_piece( pwc, A, B, fpim,
rec_fpim, rec_lpim,
curr_vector, sample_distances, end_junction,
start_junction_view, end_junction_view,
t );
// general case
evaluation_si = interval_si + samples_per_junction;
evaluation_ei = samples_per_interpolation;
interpolation_si = 0;
interpolation_ei = evaluation_ei;
interpolation_samples = interpolation_ei - interpolation_si;
NL::MatrixView gmv( power_matrix,
interpolation_si, 0,
interpolation_samples, piece_size );
NL::Matrix gpim = NL::pseudo_inverse(gmv);
for ( unsigned int piece_index = 1;
piece_index < piecees - 1;
++piece_index )
{
evaluate_piece( pwc, A, B, gpim,
rec_fpim, rec_lpim,
curr_vector, sample_distances, end_junction,
start_junction_view, end_junction_view,
t );
}
// last piece
evaluation_si = interval_si + samples_per_junction;
evaluation_ei = interval_ei + 1;
interpolation_si = 0;
interpolation_ei = evaluation_ei;
interpolation_samples = interpolation_ei -interpolation_si;
NL::MatrixView lmv( power_matrix,
interpolation_si, 0,
interpolation_samples, piece_size );
NL::Matrix lpim = NL::pseudo_inverse(lmv);
evaluate_piece( pwc, A, B, lpim,
rec_fpim, rec_lpim,
curr_vector, sample_distances, end_junction,
start_junction_view, end_junction_view,
t );
}
distance_impl()
: accuracy(1e-3),
adaptive_limit(1e-5)
{}
void set_accuracy(double _accuracy)
{
accuracy = _accuracy;
}
void set_adaptive_limit(double _adaptive_limit)
{
adaptive_limit = _adaptive_limit;
}
}; // end class distance_impl
} // end namespace detail
template < typename Curve01T, typename CurveT >
inline
Piecewise<SBasis>
distance( Curve01T const& A,
CurveT const& B,
unsigned int pieces = 40,
double adaptive_limit = 1e-5,
double accuracy = 1e-3 )
{
detail::distance_impl<Curve01T, CurveT> dist;
dist.set_accuracy(accuracy);
dist.set_adaptive_limit(adaptive_limit);
Piecewise<SBasis> pwc;
dist.evaluate(pwc, A, B, pieces);
return pwc;
}
template < typename CurveT >
inline
Piecewise<SBasis>
distance( Piecewise< D2<SBasis> > const& A,
CurveT const& B,
unsigned int pieces = 40,
double adaptive_limit = 1e-5,
double accuracy = 1e-3 )
{
Piecewise<SBasis> result;
Piecewise<SBasis> pwc;
for (unsigned int i = 0; i < A.size(); ++i)
{
pwc = distance(A[i], B, pieces, adaptive_limit, accuracy);
pwc.scaleDomain(A.cuts[i+1] - A.cuts[i]);
pwc.offsetDomain(A.cuts[i]);
result.concat(pwc);
}
return result;
}
template < typename CurveT >
inline
Piecewise<SBasis>
distance( Path const& A,
CurveT const& B,
unsigned int pieces = 40,
double adaptive_limit = 1e-5,
double accuracy = 1e-3 )
{
Piecewise<SBasis> result;
Piecewise<SBasis> pwc;
unsigned int sz = A.size();
if (A.closed()) ++sz;
for (unsigned int i = 0; i < sz; ++i)
{
pwc = distance(A[i], B, pieces, adaptive_limit, accuracy);
pwc.offsetDomain(i);
result.concat(pwc);
}
return result;
}
template < typename Curve01T, typename CurveT >
unsigned int dist_test( Piecewise<SBasis> const& pwc,
Curve01T const& A,
CurveT const& B,
double step )
{
std::cerr << "======= inside dist test =======" << std::endl;
unsigned int total_checked_values = 0;
unsigned int total_error = 0;
double nptime, sample_distance;
Point At;
for (double t = 0; t <= 1; t += step)
{
At = A(t);
nptime = nearest_time(At, B);
sample_distance = distance(At, B(nptime));
if ( !are_near(pwc(t), sample_distance, 0.001) )
{
++total_error;
std::cerr << "error at t: " << t << std::endl;
}
++total_checked_values;
}
std::cerr << " total checked values : " << total_checked_values << std::endl;
std::cerr << " total error : " << total_error << std::endl;
return total_error;
}
} // end namespace Geom
using namespace Geom;
class DCCToy : public Toy
{
private:
void draw( cairo_t *cr, std::ostringstream *notify,
int width, int height, bool save, std::ostringstream *timer_stream) override
{
Point ulc(width - 300, height - 60 );
toggles[0].bounds = Rect(ulc, ulc + Point(160,25) );
toggles[1].bounds = Rect(ulc + Point(0,30), ulc + Point(160,55) );
sliders[0].geometry(ulc - Point(450,0), 400);
if (toggle0_status != toggles[0].on)
{
toggle0_status = toggles[0].on;
using std::swap;
swap(sliders[0], sliders[1]);
}
cairo_set_source_rgba(cr, 0.3, 0.3, 0.3, 1.0);
cairo_set_line_width (cr, 0.3);
if (choice == 0)
{
A = single_curve_psh.asBezier();
cairo_d2_sb(cr, A);
}
else if (choice == 1)
{
pA.clear();
for (unsigned int k = 0; k < path_curves; ++k)
{
PointSetHandle psh;
psh.pts.resize(path_handles_per_curve);
for (unsigned int h = 0; h < path_handles_per_curve; ++h)
{
unsigned int kk = k * (path_handles_per_curve-1) + h;
psh.pts[h] = path_psh.pts[kk];
}
pA.append(psh.asBezier());
}
cairo_path(cr, pA);
}
else if (choice == 2)
{
for (unsigned int i = 0; i < pwc_curves; ++i)
{
pwA.segs[i] = pwc_psh[i].asBezier();
}
cairo_pw_d2_sb(cr, pwA);
}
D2<SBasis> B = B_psh.asBezier();
cairo_d2_sb(cr, B);
double t = sliders[0].value();
Piecewise<SBasis> d;
unsigned int total_error = 0;
Point cursor;
if (!toggles[0].on)
{
if (choice == 0)
{
cursor = A(t);
d = distance(A, B, 40);
// uncomment following lines to view errors in computing the distance
//total_error = dist_test(d, A, B, 0.0004);
}
else if (choice == 1)
{
cursor = pA(t);
d = distance(pA, B, 40);
// uncomment following lines to view errors in computing the distance
//total_error = dist_test(d, pA, B, 0.0004);
}
else if (choice == 2)
{
cursor = pwA(t);
d = distance(pwA, B, 40);
// uncomment following lines to view errors in computing the distance
//total_error = dist_test(d, pwA, B, 0.0004);
}
double nptB = nearest_time(cursor, B);
draw_circ(cr, cursor);
cairo_move_to(cr, cursor);
cairo_line_to(cr, B(nptB));
cairo_stroke(cr);
}
else
{
Point np(0,0);
cursor = B(t);
if (choice == 0)
{
double nptA = nearest_time(cursor, A);
np = A(nptA);
d = distance(B, A, 40);
// uncomment following lines to view errors in computing the distance
//total_error = dist_test(d, B, A, 0.0004);
}
else if (choice == 1)
{
double nptA = nearest_time(cursor, pA);
np = pA(nptA);
d = distance(B, pA, 40);
// uncomment following lines to view errors in computing the distance
//total_error = dist_test(d, B, pA, 0.0004);
}
draw_circ(cr, cursor);
cairo_move_to(cr, cursor);
cairo_line_to(cr, np);
cairo_stroke(cr);
}
if (total_error != 0)
*notify << "total error: " << total_error << " ";
// draw distance function
Piecewise< D2<SBasis> > pwc;
pwc.cuts = d.cuts;
pwc.segs.resize(d.size());
D2<SBasis> piece;
double domain_length = 800 / d.domain().extent();
for ( unsigned int i = 0; i < d.size(); ++i )
{
piece[X] = SBasis(Linear(20,20)
+ domain_length * Linear(d.cuts[i], d.cuts[i+1]));
piece[Y] = 3 * d.segs[i];
pwc.segs[i] = piece;
}
cairo_set_source_rgb(cr, 0.7,0,0);
cairo_pw_d2_sb(cr, pwc);
*notify << "total cuts: " << pwc.cuts.size();
if (toggles[1].on)
{
for (unsigned int i = 0; i < pwc.cuts.size(); ++i)
{
draw_handle(cr, pwc(pwc.cuts[i]));
}
}
else
{
draw_handle(cr, pwc(0.0));
draw_handle(cr, pwc(0.25));
draw_handle(cr, pwc(0.5));
draw_handle(cr, pwc(0.75));
draw_handle(cr, pwc(1));
}
draw_circ(cr, pwc(t));
cairo_stroke(cr);
Toy::draw(cr, notify, width, height, save,timer_stream);
}
public:
DCCToy()
{
toggle0_status = false;
choice = 0;
single_curve_handles = 6;
path_curves = 3;
path_handles_per_curve = 4;
path_total_handles = path_curves * (path_handles_per_curve - 1) + 1;
pwc_curves = 3;
pwc_handles_per_curve = 4;
pwc_total_handles = pwc_curves * pwc_handles_per_curve;
B_handles = 4;
if (choice == 0)
{
for (unsigned int i = 0; i < single_curve_handles; ++i)
{
single_curve_psh.push_back(700*uniform(), 500*uniform());
}
handles.push_back(&single_curve_psh);
sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t");
}
else if (choice == 1)
{
for (unsigned int i = 0; i < path_total_handles; ++i)
{
path_psh.push_back(700*uniform(), 500*uniform());
}
handles.push_back(&path_psh);
sliders.emplace_back(0.0, path_curves, 0.0, 0.0, "t");
}
else if (choice == 2)
{
pwc_psh.resize(pwc_curves);
pwA.segs.resize(pwc_curves);
pwA.cuts.resize(pwc_curves+1);
pwA.cuts[0] = 0;
double length = 1.0 / pwc_curves;
for (unsigned int i = 0; i < pwc_curves; ++i)
{
for (unsigned int j = 0; j < pwc_handles_per_curve; ++j)
{
pwc_psh[i].push_back(700*uniform(), 500*uniform());
}
handles.push_back(&(pwc_psh[i]));
pwA.cuts[i+1] = pwA.cuts[i] + length;
}
sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t");
}
for (unsigned int i = 0; i < B_handles; ++i)
{
B_psh.push_back(700*uniform(), 500*uniform());
}
handles.push_back(&B_psh);
sliders.emplace_back(0.0, 1.0, 0.0, 0.0, "t");
toggles.emplace_back("d(A,B) <-> d(B,A)", false);
toggles.emplace_back("Show/Hide cuts", false);
handles.push_back(&(toggles[0]));
handles.push_back(&(toggles[1]));
handles.push_back(&(sliders[0]));
}
private:
bool toggle0_status;
unsigned int choice;
unsigned int single_curve_handles, B_handles;
unsigned int path_curves, path_handles_per_curve, path_total_handles;
unsigned int pwc_curves, pwc_handles_per_curve, pwc_total_handles;
PointSetHandle single_curve_psh;
PointSetHandle path_psh;
std::vector<PointSetHandle> pwc_psh;
PointSetHandle B_psh;
std::vector<Toggle> toggles;
std::vector<Slider> sliders;
D2<SBasis> A;
Path pA;
Piecewise< D2<SBasis> > pwA;
};
int main(int argc, char **argv)
{
init( argc, argv, new DCCToy(), 840, 600 );
return 0;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|