1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
#include <2geom/d2.h>
#include <2geom/sbasis.h>
#include <2geom/bezier-to-sbasis.h>
#include <2geom/sbasis-geometric.h>
#include <toys/path-cairo.h>
#include <toys/toy-framework-2.h>
#include <cstdlib>
#include <vector>
using std::vector;
using namespace Geom;
#define SIZE 4
#define NB_SLIDER 8
//------------------------------------------------
// Some goodies to navigate through curve's levels.
//------------------------------------------------
struct LevelCrossing{
Point pt;
double t;
bool sign;
bool used;
};
struct LevelCrossingOrder {
bool operator()(LevelCrossing a, LevelCrossing b) {
return a.pt[Y] < b.pt[Y];
}
};
typedef std::vector<LevelCrossing> LevelCrossings;
class LevelsCrossings: public std::vector<LevelCrossings>{
public:
LevelsCrossings():std::vector<LevelCrossings>(){};
LevelsCrossings(std::vector<std::vector<double> > const ×,
Piecewise<D2<SBasis> > const &f,
Piecewise<SBasis> const &dx){
for (const auto & time : times){
LevelCrossings lcs;
for (double j : time){
LevelCrossing lc;
lc.pt = f.valueAt(j);
lc.t = j;
lc.sign = ( dx.valueAt(j)>0 );
lc.used = false;
lcs.push_back(lc);
}
std::sort(lcs.begin(), lcs.end(), LevelCrossingOrder());
//TODO: reverse all "in" flag if we had the wrong orientation!
push_back(lcs);
}
}
void flipInOut(){
for (unsigned i=0; i<size(); i++){
for (auto & j : (*this)){
j.sign = !j.sign;
}
}
}
void findFirstUnused(unsigned &level, unsigned &idx){
level = size();
idx = 0;
for (unsigned i=0; i<size(); i++){
for (unsigned j=0; j<(*this)[i].size(); j++){
if (!(*this)[i][j].used){
level = i;
idx = j;
return;
}
}
}
}
//set indexes to point to the next point in the "snake walk"
//follow_level's meaning:
// 0=yes upward
// 1=no, last move was upward,
// 2=yes downward
// 3=no, last move was downward.
void step(unsigned &level, unsigned &idx, int &direction){
std::cout << "Entering step: "<<level<<","<<idx<<", dir="<< direction<<"\n";
if ( direction % 2 == 0 ){
if (direction == 0) {
if ( idx >= (*this)[level].size()-1 || (*this)[level][idx+1].used ) {
level = size();
std::cout << "max end of level reached...\n";
return;
}
idx += 1;
}else{
if ( idx <= 0 || (*this)[level][idx-1].used ) {
level = size();
std::cout << "min end of level reached...\n";
return;
}
idx -= 1;
}
direction += 1;
std::cout << "exit with: "<<level<<","<<idx<<", dir="<< direction<<"\n";
return;
}
double t = (*this)[level][idx].t;
double sign = ((*this)[level][idx].sign ? 1 : -1);
double next_t = t;
level += 1;
direction = (direction + 1)%4;
if (level == size()){
std::cout << "max level reached\n";
return;
}
for (unsigned j=0; j<(*this)[level].size(); j++){
double tj = (*this)[level][j].t;
if ( sign*(tj-t) > 0 ){
if( next_t == t || sign*(tj-next_t)<0 ){
next_t = tj;
idx = j;
}
}
}
if ( next_t == t ){//not found.
level = size();
std::cout << "no next time found\n";
return;
}
//TODO: time is periodic!!!
//TODO: allow several components.
if ( (*this)[level][idx].used ) {
level = size();
std::cout << " reached a point already used\n";
return;
}
std::cout << "exit with: "<<level<<","<<idx<<"\n";
return;
}
};
//------------------------------------------------
// Generate the levels with random, growth...
//------------------------------------------------
std::vector<double>generateLevels(Interval const &domain,
double const width,
double const growth,
double randomness){
std::vector<double> result;
std::srand(0);
double x = domain.min() + width/2;
double step = width;
while (x<domain.max()){
result.push_back(x);
double rdm = 1+ ( (rand() % 100) - 50) /100.*randomness;
x+= step*growth*rdm;
step*=growth;
}
return result;
}
//-------------------------------------------------------
// Walk through the intersections to create linear hatches
//-------------------------------------------------------
std::vector<Point> linearSnake(Piecewise<D2<SBasis> > const &f, double dy,double growth, double rdmness){
std::vector<Point> result;
Piecewise<SBasis> x = make_cuts_independent(f)[X];
//Rque: derivative is computed twice in the 2 lines below!!
Piecewise<SBasis> dx = derivative(x);
OptInterval range = bounds_exact(x);
//TODO: test range non emptyness!!
std::vector<double> levels = generateLevels((*range), dy, growth, rdmness);
std::vector<std::vector<double> > times;
times = multi_roots(x,levels);
//TODO: fix multi_roots!!!*****************************************
//remove doubles :-(
std::vector<std::vector<double> > cleaned_times(levels.size(),std::vector<double>());
for (unsigned i=0; i<times.size(); i++){
if ( times[i].size()>0 ){
double last_t = times[i][0]-1;//ugly hack!!
for (unsigned j=0; j<times[i].size(); j++){
if (times[i][j]-last_t >0.000001){
last_t = times[i][j];
cleaned_times[i].push_back(last_t);
}
}
}
}
times = cleaned_times;
for (unsigned i=0; i<times.size(); i++){
std::cout << "roots on level "<<i<<": ";
for (double j : times){
std::cout << j <<" ";
}
std::cout <<"\n";
}
//*******************************************************************
LevelsCrossings lscs(times,f,dx);
unsigned i,j;
lscs.findFirstUnused(i,j);
while ( i < lscs.size() ){
int dir = 0;
while ( i < lscs.size() ){
result.push_back(lscs[i][j].pt);
lscs[i][j].used = true;
lscs.step(i,j, dir);
}
//TODO: handle "non convex cases" where hatches have to be restarted at some point.
//This needs some care in linearSnake->smoothSnake.
//
lscs.findFirstUnused(i,j);
}
return result;
}
//-------------------------------------------------------
// Smooth the linear hatches according to params...
//-------------------------------------------------------
Piecewise<D2<SBasis> > smoothSnake(std::vector<Point> const &linearSnake,
double scale_bf = 1, double scale_bb = 1,
double scale_tf = 1, double scale_tb = 1){
if (linearSnake.size()<2) return Piecewise<D2<SBasis> >();
bool is_top = true;
Point last_pt = linearSnake[0];
Point last_hdle = linearSnake[0];
Path result(last_pt);
unsigned i=1;
while( i+1<linearSnake.size() ){
Point pt0 = linearSnake[i];
Point pt1 = linearSnake[i+1];
Point new_pt = (pt0+pt1)/2;
double scale = (is_top ? scale_tf : scale_bf );
Point new_hdle = new_pt+(pt0-new_pt)*scale;
result.appendNew<CubicBezier>(last_hdle,new_hdle,new_pt);
last_pt = new_pt;
scale = (is_top ? scale_tb : scale_bb );
last_hdle = new_pt+(pt1-new_pt)*scale;
i+=2;
is_top = !is_top;
}
if ( i<linearSnake.size() )
result.appendNew<CubicBezier>(last_hdle,linearSnake[i],linearSnake[i]);
return result.toPwSb();
}
//-------------------------------------------------------
// Bend a path...
//-------------------------------------------------------
Piecewise<D2<SBasis> > bend(Piecewise<D2<SBasis> > const &f, Piecewise<SBasis> bending){
D2<Piecewise<SBasis> > ff = make_cuts_independent(f);
ff[X] += compose(bending, ff[Y]);
return sectionize(ff);
}
//-------------------------------------------------------
// The toy!
//-------------------------------------------------------
class HatchesToy: public Toy {
PointHandle adjuster[NB_SLIDER];
public:
PointSetHandle b1_handle;
PointSetHandle b2_handle;
void draw(cairo_t *cr,
std::ostringstream *notify,
int width, int height, bool save, std::ostringstream *timer_stream) override {
for(unsigned i=0; i<NB_SLIDER; i++){
adjuster[i].pos[X] = 30+i*20;
if (adjuster[i].pos[Y]<100) adjuster[i].pos[Y] = 100;
if (adjuster[i].pos[Y]>400) adjuster[i].pos[Y] = 400;
cairo_move_to(cr, Point(30+i*20,100));
cairo_line_to(cr, Point(30+i*20,400));
cairo_set_line_width (cr, .5);
cairo_set_source_rgba (cr, 0., 0., 0., 1);
cairo_stroke(cr);
}
double hatch_width = (400-adjuster[0].pos[Y])/300.*50;
double scale_topfront = (250-adjuster[1].pos[Y])/150.*5;
double scale_topback = (250-adjuster[2].pos[Y])/150.*5;
double scale_botfront = (250-adjuster[3].pos[Y])/150.*5;
double scale_botback = (250-adjuster[4].pos[Y])/150.*5;
double growth = 1+(250-adjuster[5].pos[Y])/150.*.1;
double rdmness = 1+(400-adjuster[6].pos[Y])/300.*.9;
double bend_amount = (250-adjuster[7].pos[Y])/300.*100.;
b1_handle.pts.back() = b2_handle.pts.front();
b1_handle.pts.front() = b2_handle.pts.back();
D2<SBasis> B1 = b1_handle.asBezier();
D2<SBasis> B2 = b2_handle.asBezier();
{
cairo_save(cr);
cairo_set_line_width(cr, 0.3);
cairo_set_source_rgb(cr, 0, 0, 0);
cairo_d2_sb(cr, B1);
cairo_d2_sb(cr, B2);
cairo_restore(cr);
}
Piecewise<D2<SBasis> >B;
B.concat(Piecewise<D2<SBasis> >(B1));
B.continuousConcat(Piecewise<D2<SBasis> >(B2));
Piecewise<SBasis> bending = Piecewise<SBasis>(shift(Linear(bend_amount),1));
//TODO: test optrect non empty!!
bending.setDomain((*bounds_exact(B))[Y]);
Piecewise<D2<SBasis> >bentB = bend(B, bending);
std::vector<Point> snakePoints;
snakePoints = linearSnake(bentB, hatch_width, growth, rdmness);
Piecewise<D2<SBasis> >smthSnake = smoothSnake(snakePoints,
scale_topfront,
scale_topback,
scale_botfront,
scale_botback);
smthSnake = bend(smthSnake, -bending);
cairo_pw_d2_sb(cr, smthSnake);
cairo_set_line_width (cr, 1.5);
cairo_set_source_rgba (cr, 0., 0., 0., 1);
cairo_stroke(cr);
if ( snakePoints.size() > 0 ){
Path snake(snakePoints.front());
for (unsigned i=1; i<snakePoints.size(); i++){
snake.appendNew<LineSegment>(snakePoints[i]);
}
//cairo_pw_d2_sb(cr, snake.toPwSb() );
}
//cairo_pw_d2_sb(cr, B);
cairo_set_line_width (cr, .5);
cairo_set_source_rgba (cr, 0.7, 0.2, 0., 1);
cairo_stroke(cr);
Toy::draw(cr, notify, width, height, save,timer_stream);
}
public:
HatchesToy(){
for(int i = 0; i < SIZE; i++) {
b1_handle.push_back(150+uniform()*300,150+uniform()*300);
b2_handle.push_back(150+uniform()*300,150+uniform()*300);
}
b1_handle.pts[0] = Geom::Point(400,300);
b1_handle.pts[1] = Geom::Point(400,400);
b1_handle.pts[2] = Geom::Point(100,400);
b1_handle.pts[3] = Geom::Point(100,300);
b2_handle.pts[0] = Geom::Point(100,300);
b2_handle.pts[1] = Geom::Point(100,200);
b2_handle.pts[2] = Geom::Point(400,200);
b2_handle.pts[3] = Geom::Point(400,300);
handles.push_back(&b1_handle);
handles.push_back(&b2_handle);
for(unsigned i = 0; i < NB_SLIDER; i++) {
adjuster[i].pos = Geom::Point(30+i*20,250);
handles.push_back(&(adjuster[i]));
}
}
};
int main(int argc, char **argv) {
init(argc, argv, new HatchesToy);
return 0;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
//vim:filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99:
|