1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
#include <toys/path-cairo.h>
#include <toys/toy-framework-2.h>
#include <2geom/svg-path-parser.h>
#include <2geom/utils.h>
#include <cstdlib>
#include <2geom/crossing.h>
#include <2geom/path-intersection.h>
#include <2geom/transforms.h>
#include <2geom/sbasis-geometric.h>
#include <2geom/d2.h>
#include <2geom/sbasis.h>
#include <2geom/pathvector.h>
using namespace Geom;
struct EndPoint {
public:
Point point, norm;
double time;
EndPoint() : time(0) { }
EndPoint(Point p, Point n, double t) : point(p), norm(n), time(t) { }
};
struct Edge {
public:
EndPoint from, to;
int ix;
bool cw;
Edge() { }
Edge(EndPoint f, EndPoint t, int i, bool c) : from(f), to(t), ix(i), cw(c) { }
bool operator==(Edge const &other) { return from.time == other.from.time && to.time == other.to.time; }
};
typedef std::vector<Edge> Edges;
Edges edges(Path const &p, Crossings const &cr, unsigned ix) {
Edges ret = Edges();
EndPoint prev;
for(unsigned i = 0; i <= cr.size(); i++) {
double t = cr[i == cr.size() ? 0 : i].getTime(ix);
Point pnt = p.pointAt(t);
Point normal = p.pointAt(t+0.01) - pnt;
normal.normalize();
std::cout << pnt << "\n";
EndPoint cur(pnt, normal, t);
if(i == 0) { prev = cur; continue; }
ret.push_back(Edge(prev, cur, ix, false));
ret.push_back(Edge(prev, cur, ix, true));
prev = cur;
}
return ret;
}
template<class T>
void append(std::vector<T> &vec, std::vector<T> const &other) {
vec.insert(vec.end(),other.begin(), other.end());
}
Edges edges(PathVector const &ps, CrossingSet const &crs) {
Edges ret = Edges();
for(unsigned i = 0; i < crs.size(); i++) {
Edges temp = edges(ps[i], crs[i], i);
append(ret, temp);
}
return ret;
}
PathVector edges_to_paths(Edges const &es, PathVector const &ps) {
PathVector ret;
for(const auto & e : es) {
ret.push_back(ps[e.ix].portion(e.from.time, e.to.time));
}
return ret;
}
void draw_cell(cairo_t *cr, Edges const &es, PathVector const &ps) {
cairo_set_source_rgba(cr, uniform(), uniform(), uniform(), 0.5);
cairo_set_line_width(cr, uniform() * 10);
PathVector paths = edges_to_paths(es, ps);
Piecewise<D2<SBasis> > pw = paths_to_pw(paths);
double area;
Point centre;
Geom::centroid(pw, centre, area);
cairo_path(cr, paths); //* (Translate(-centre) * Scale(0.2) * Translate(centre*2)));
cairo_stroke(cr);
}
//Only works for normal
double ang(Point n1, Point n2) {
return (dot(n1, n2)+1) * (cross(n1, n2) < 0 ? -1 : 1);
}
template<class T>
void remove(std::vector<T> &vec, T const &val) {
for (typename std::vector<T>::iterator it = vec.begin(); it != vec.end(); ++it) {
if(*it == val) {
vec.erase(it);
return;
}
}
}
std::vector<Edges> cells(cairo_t */*cr*/, PathVector const &ps) {
CrossingSet crs = crossings_among(ps);
Edges es = edges(ps, crs);
std::vector<Edges> ret = std::vector<Edges>();
while(!es.empty()) {
std::cout << "hello!\n";
Edge start = es.front();
Path p = Path();
Edge cur = start;
bool rev = false;
Edges cell = Edges();
do {
std::cout << rev << " " << cur.from.time << ", " << cur.to.time << "\n";
double a = 0;
Edge was = cur;
EndPoint curpnt = rev ? cur.from : cur.to;
Point norm = rev ? -curpnt.norm : curpnt.norm;
//Point to = curpnt.point + norm *20;
//std::cout << norm;
for(auto & e : es) {
if(e == was || e.cw != start.cw) continue;
if((!are_near(curpnt.time, e.from.time)) &&
are_near(curpnt.point, e.from.point, 0.1)) {
double v = ang(norm, e.from.norm);
//draw_line_seg(cr, curpnt.point, to);
//draw_line_seg(cr, to, es[i].from.point + es[i].from.norm*30);
//std::cout << v << "\n";
if(start.cw ? v < a : v > a ) {
a = v;
cur = e;
rev = false;
}
}
if((!are_near(curpnt.time, e.to.time)) &&
are_near(curpnt.point, e.to.point, 0.1)) {
double v = ang(norm, -e.to.norm);
if(start.cw ? v < a : v > a) {
a = v;
cur = e;
rev = true;
}
}
}
cell.push_back(cur);
remove(es, cur);
if(cur == was) break;
} while(!(cur == start));
if(are_near(start.to.point, rev ? cur.from.point : cur.to.point)) {
ret.push_back(cell);
}
}
return ret;
}
int cellWinding(Edges const &/*es*/, PathVector const &/*ps*/) {
return 0;
}
class Sanitize: public Toy {
PathVector paths;
std::vector<Edges> es;
PointSetHandle angh;
PointSetHandle pathix;
void draw(cairo_t *cr, std::ostringstream *notify, int width, int height, bool save,
std::ostringstream *timer_stream) override
{
int ix = pathix.pts[0][X] / 10;
es = cells(cr, paths);
draw_cell(cr, es[ix], paths);
cairo_set_source_rgba(cr, 0, 0, 0, 1);
//cairo_path(cr, paths);
//cairo_stroke(cr);
Point ap = angh.pts[1] - angh.pts[0], bp = angh.pts[2] - angh.pts[0];
ap.normalize(); bp.normalize();
*notify << ang(ap, bp);
Toy::draw(cr, notify, width, height, save,timer_stream);
}
public:
Sanitize () {}
void first_time(int argc, char** argv) override {
const char *path_name="sanitize_examples.svgd";
if(argc > 1)
path_name = argv[1];
paths = read_svgd(path_name);
handles.push_back(&angh); handles.push_back(&pathix);
angh.push_back(100, 100);
angh.push_back(80, 100);
angh.push_back(100, 80);
pathix.push_back(30, 200);
}
};
int main(int argc, char **argv) {
init(argc, argv, new Sanitize());
return 0;
}
|