summaryrefslogtreecommitdiffstats
path: root/tests/ellipse-test.cpp
blob: 38eca0e9b1e451bacc671af598ae3dc5aa63a2c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/** @file
 * @brief Unit tests for Ellipse and related functions
 * Uses the Google Testing Framework
 *//*
 * Authors:
 *   Krzysztof Kosiński <tweenk.pl@gmail.com>
 *
 * Copyright 2015 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

#include <iostream>
#include <glib.h>

#include <2geom/angle.h>
#include <2geom/ellipse.h>
#include <2geom/elliptical-arc.h>
#include <memory>

#include "testing.h"

#ifndef M_SQRT2
#  define M_SQRT2 1.41421356237309504880
#endif

using namespace Geom;

TEST(EllipseTest, Arcs) {
    Ellipse e(Point(5,10), Point(5, 10), 0);

    std::unique_ptr<EllipticalArc> arc1(e.arc(Point(5,0), Point(0,0), Point(0,10)));

    EXPECT_EQ(arc1->initialPoint(), Point(5,0));
    EXPECT_EQ(arc1->finalPoint(), Point(0,10));
    EXPECT_EQ(arc1->boundsExact(), Rect::from_xywh(0,0,5,10));
    EXPECT_EQ(arc1->center(), e.center());
    EXPECT_EQ(arc1->largeArc(), false);
    EXPECT_EQ(arc1->sweep(), false);

    std::unique_ptr<EllipticalArc> arc1r(e.arc(Point(0,10), Point(0,0), Point(5,0)));

    EXPECT_EQ(arc1r->boundsExact(), arc1->boundsExact());
    EXPECT_EQ(arc1r->sweep(), true);
    EXPECT_EQ(arc1r->largeArc(), false);

    std::unique_ptr<EllipticalArc> arc2(e.arc(Point(5,0), Point(10,20), Point(0,10)));

    EXPECT_EQ(arc2->boundsExact(), Rect::from_xywh(0,0,10,20));
    EXPECT_EQ(arc2->largeArc(), true);
    EXPECT_EQ(arc2->sweep(), true);

    std::unique_ptr<EllipticalArc> arc2r(e.arc(Point(0,10), Point(10,20), Point(5,0)));

    EXPECT_EQ(arc2r->boundsExact(), arc2->boundsExact());
    EXPECT_EQ(arc2r->largeArc(), true);
    EXPECT_EQ(arc2r->sweep(), false);

    // exactly half arc
    std::unique_ptr<EllipticalArc> arc3(e.arc(Point(5,0), Point(0,10), Point(5,20)));

    EXPECT_EQ(arc3->boundsExact(), Rect::from_xywh(0,0,5,20));
    EXPECT_EQ(arc3->largeArc(), false);
    EXPECT_EQ(arc3->sweep(), false);

    // inner point exactly at midpoint between endpoints
    std::unique_ptr<EllipticalArc> arc4(e.arc(Point(5,0), Point(2.5,5), Point(0,10)));

    EXPECT_EQ(arc4->initialPoint(), Point(5,0));
    EXPECT_EQ(arc4->finalPoint(), Point(0,10));
    EXPECT_EQ(arc4->boundsExact(), Rect::from_xywh(0,0,5,10));
    EXPECT_EQ(arc4->largeArc(), false);
    EXPECT_EQ(arc4->sweep(), false);

    std::unique_ptr<EllipticalArc> arc4r(e.arc(Point(0,10), Point(2.5,5), Point(5,0)));

    EXPECT_EQ(arc4r->initialPoint(), Point(0,10));
    EXPECT_EQ(arc4r->finalPoint(), Point(5,0));
    EXPECT_EQ(arc4r->boundsExact(), Rect::from_xywh(0,0,5,10));
    EXPECT_EQ(arc4r->largeArc(), false);
    EXPECT_EQ(arc4r->sweep(), true);
}

TEST(EllipseTest, AreNear) {
    Ellipse e1(Point(5.000001,10), Point(5,10), Angle::from_degrees(45));
    Ellipse e2(Point(5.000000,10), Point(5,10), Angle::from_degrees(225));
    Ellipse e3(Point(4.999999,10), Point(10,5), Angle::from_degrees(135));
    Ellipse e4(Point(5.000001,10), Point(10,5), Angle::from_degrees(315));

    EXPECT_TRUE(are_near(e1, e2, 1e-5));
    EXPECT_TRUE(are_near(e1, e3, 1e-5));
    EXPECT_TRUE(are_near(e1, e4, 1e-5));

    Ellipse c1(Point(20.000001,35.000001), Point(5.000001,4.999999), Angle::from_degrees(180.00001));
    Ellipse c2(Point(19.999999,34.999999), Point(4.999999,5.000001), Angle::from_degrees(179.99999));
    //std::cout << c1 << "\n" << c2 << std::endl;
    EXPECT_TRUE(are_near(c1, c2, 2e-5));

    EXPECT_FALSE(are_near(c1, e1, 1e-5));
    EXPECT_FALSE(are_near(c2, e1, 1e-5));
    EXPECT_FALSE(are_near(c1, e2, 1e-5));
    EXPECT_FALSE(are_near(c2, e2, 1e-5));
    EXPECT_FALSE(are_near(c1, e3, 1e-5));
    EXPECT_FALSE(are_near(c2, e3, 1e-5));
    EXPECT_FALSE(are_near(c1, e4, 1e-5));
    EXPECT_FALSE(are_near(c2, e4, 1e-5));
}

TEST(EllipseTest, Transformations) {
    Ellipse e(Point(5,10), Point(5,10), Angle::from_degrees(45));

    Ellipse er = e * Rotate::around(Point(5,10), Angle::from_degrees(45));
    Ellipse ercmp(Point(5,10), Point(5,10), Angle::from_degrees(90));
    //std::cout << e << "\n" << er << "\n" << ercmp << std::endl;
    EXPECT_TRUE(are_near(er, ercmp, 1e-12));

    Ellipse eflip = e * Affine(Scale(-1,1));
    Ellipse eflipcmp(Point(-5, 10), Point(5,10), Angle::from_degrees(135));
    EXPECT_TRUE(are_near(eflip, eflipcmp, 1e-12));
}

TEST(EllipseTest, TimeAt) {
    Ellipse e(Point(4, 17), Point(22, 34), 2);

    for (unsigned i = 0; i < 100; ++i) {
        Coord t = g_random_double_range(0, 2*M_PI);
        Point p = e.pointAt(t);
        Coord t2 = e.timeAt(p);
        EXPECT_FLOAT_EQ(t, t2);
    }
}

TEST(EllipseTest, LineIntersection) {
    Ellipse e(Point(0, 0), Point(3, 2), 0);
    Line l(Point(0, -2), Point(1, 0));

    std::vector<ShapeIntersection> xs = e.intersect(l);

    ASSERT_EQ(xs.size(), 2ul);

    // due to numeric imprecision when evaluating Ellipse,
    // the points may deviate by around 2e-16
    EXPECT_NEAR(xs[0].point()[X], 0, 1e-15);
    EXPECT_NEAR(xs[0].point()[Y], -2, 1e-15);
    EXPECT_NEAR(xs[1].point()[X], 9./5, 1e-15);
    EXPECT_NEAR(xs[1].point()[Y], 8./5, 1e-15);

    EXPECT_intersections_valid(e, l, xs, 1e-15);

    // Test with a degenerate ellipse
    auto degen = Ellipse({0, 0}, {3, 2}, 0);
    degen *= Scale(1.0, 0.0); // Squash to the X-axis interval [-3, 3].

    g_random_set_seed(0xCAFECAFE);
    // Intersect with a line
    for (size_t _ = 0; _ < 10'000; _++) {
        auto line = Line(Point(g_random_double_range(-3.0, 3.0), g_random_double_range(-3.0, -1.0)),
                         Point(g_random_double_range(-3.0, 3.0), g_random_double_range(1.0, 3.0)));
        auto xings = degen.intersect(line);
        EXPECT_EQ(xings.size(), 2u);
        EXPECT_intersections_valid(degen, line, xings, 1e-14);
    }
    // Intersect with another, non-degenerate ellipse
    for (size_t _ = 0; _ < 10'000; _++) {
        auto other = Ellipse(Point(g_random_double_range(-1.0, 1.0), g_random_double_range(-1.0, 1.0)),
                             Point(g_random_double_range(1.0, 2.0), g_random_double_range(1.0, 3.0)), 0);
        auto xings = degen.intersect(other);
        EXPECT_intersections_valid(degen, other, xings, 1e-14);
    }
    // Intersect with another ellipse which is also degenerate
    for (size_t _ = 0; _ < 10'000; _++) {
        auto other = Ellipse({0, 0}, {1, 1}, 0); // Unit circle
        other *= Scale(0.0, g_random_double_range(0.5, 4.0)); // Squash to Y axis
        other *= Rotate(g_random_double_range(-1.5, 1.5)); // Rotate a little (still passes through the origin)
        other *= Translate(g_random_double_range(-2.9, 2.9), 0.0);
        auto xings = degen.intersect(other);
        EXPECT_EQ(xings.size(), 4u);
        EXPECT_intersections_valid(degen, other, xings, 1e-14);
    }
}

TEST(EllipseTest, EllipseIntersection) {
    Ellipse e1;
    Ellipse e2;
    std::vector<ShapeIntersection> xs;

    e1.set(Point(300, 300), Point(212, 70), -0.785);
    e2.set(Point(250, 300), Point(230, 90), 1.321);
    xs = e1.intersect(e2);
    EXPECT_EQ(xs.size(), 4ul);
    EXPECT_intersections_valid(e1, e2, xs, 4e-10);

    e1.set(Point(0, 0), Point(1, 1), 0);
    e2.set(Point(0, 1), Point(1, 1), 0);
    xs = e1.intersect(e2);
    EXPECT_EQ(xs.size(), 2ul);
    EXPECT_intersections_valid(e1, e2, xs, 1e-10);

    e1.set(Point(0, 0), Point(1, 1), 0);
    e2.set(Point(1, 0), Point(1, 1), 0);
    xs = e1.intersect(e2);
    EXPECT_EQ(xs.size(), 2ul);
    EXPECT_intersections_valid(e1, e2, xs, 1e-10);

    // === Test detection of external tangency between ellipses ===
    // Perpendicular major axes
    e1.set({0, 0}, {5, 3}, 0); // rightmost point (5, 0)
    e2.set({6, 0}, {1, 2}, 0); // leftmost point (5, 0)
    xs = e1.intersect(e2);
    ASSERT_GT(xs.size(), 0);
    EXPECT_intersections_valid(e1, e2, xs, 1e-10);
    EXPECT_TRUE(are_near(xs[0].point(), Point(5, 0)));

    // Collinear major axes
    e1.set({30, 0}, {9, 1}, 0); // leftmost point (21, 0)
    e2.set({18, 0}, {3, 2}, 0); // rightmost point (21, 0)
    xs = e1.intersect(e2);
    ASSERT_GT(xs.size(), 0);
    EXPECT_intersections_valid(e1, e2, xs, 1e-10);
    EXPECT_TRUE(are_near(xs[0].point(), Point(21, 0)));

    // Circles not aligned to an axis (Pythagorean triple: 3^2 + 4^2 == 5^2)
    e1.set({0, 0}, {3, 3}, 0); // radius 3
    e2.set({3, 4}, {2, 2}, 0); // radius 2
    // We know 2 + 3 == 5 == distance((0, 0), (3, 4)) so there's an external tangency
    // between these circles, at a point at distance 3 from the origin, on the line x = 0.75 y.
    xs = e1.intersect(e2);
    ASSERT_GT(xs.size(), 0);
    EXPECT_intersections_valid(e1, e2, xs, 1e-6);

    // === Test the detection of internal tangency between ellipses ===
    // Perpendicular major axes
    e1.set({0, 0}, {8, 17}, 0); // rightmost point (8, 0)
    e2.set({6, 0}, {2, 1}, 0); // rightmost point (8, 0)
    xs = e1.intersect(e2);
    ASSERT_GT(xs.size(), 0);
    EXPECT_intersections_valid(e1, e2, xs, 1e-10);
    EXPECT_TRUE(are_near(xs[0].point(), Point(8, 0)));

    // Collinear major axes
    e1.set({30, 0}, {9, 5}, 0); // rightmost point (39, 0)
    e2.set({36, 0}, {3, 1}, 0); // rightmost point (39, 0)
    xs = e1.intersect(e2);
    ASSERT_GT(xs.size(), 0);
    EXPECT_intersections_valid(e1, e2, xs, 1e-6);
    EXPECT_TRUE(are_near(xs[0].point(), Point(39, 0)));

    // Circles not aligned to an axis (Pythagorean triple: 3^2 + 4^2 == 5^2)
    e1.set({4, 3}, {5, 5}, 0); // Passes through (0, 0), center on the line y = 0.75 x
    e2.set({8, 6}, {10, 10}, 0); // Also passes through (0, 0), center on the same line.
    xs = e1.intersect(e2);
    ASSERT_GT(xs.size(), 0);
    EXPECT_intersections_valid(e1, e2, xs, 1e-6);
    EXPECT_TRUE(are_near(xs[0].point(), Point(0, 0)));
}

TEST(EllipseTest, BezierIntersection) {
    Ellipse e(Point(300, 300), Point(212, 70), -3.926);
    D2<Bezier> b(Bezier(100, 300, 100, 500), Bezier(100, 100, 500, 500));

    std::vector<ShapeIntersection> xs = e.intersect(b);

    EXPECT_EQ(xs.size(), 2ul);
    EXPECT_intersections_valid(e, b, xs, 6e-12);
}

TEST(EllipseTest, Coefficients) {
    std::vector<Ellipse> es;
    es.emplace_back(Point(-15,25), Point(10,15), Angle::from_degrees(45).radians0());
    es.emplace_back(Point(-10,33), Point(40,20), M_PI);
    es.emplace_back(Point(10,-33), Point(40,20), Angle::from_degrees(135).radians0());
    es.emplace_back(Point(-10,-33), Point(50,10), Angle::from_degrees(330).radians0());

    for (auto & i : es) {
        Coord a, b, c, d, e, f;
        i.coefficients(a, b, c, d, e, f);
        Ellipse te(a, b, c, d, e, f);
        EXPECT_near(i, te, 1e-10);
        for (Coord t = -5; t < 5; t += 0.125) {
            Point p = i.pointAt(t);
            Coord eq = a*p[X]*p[X] + b*p[X]*p[Y] + c*p[Y]*p[Y]
              + d*p[X] + e*p[Y] + f;
            EXPECT_NEAR(eq, 0, 1e-10);
        }
    }
}

TEST(EllipseTest, UnitCircleTransform) {
    std::vector<Ellipse> es;
    es.emplace_back(Point(-15,25), Point(10,15), Angle::from_degrees(45));
    es.emplace_back(Point(-10,33), Point(40,20), M_PI);
    es.emplace_back(Point(10,-33), Point(40,20), Angle::from_degrees(135));
    es.emplace_back(Point(-10,-33), Point(50,10), Angle::from_degrees(330));

    for (auto & e : es) {
        EXPECT_near(e.unitCircleTransform() * e.inverseUnitCircleTransform(), Affine::identity(), 1e-8);

        for (Coord t = -1; t < 10; t += 0.25) {
            Point p = e.pointAt(t);
            p *= e.inverseUnitCircleTransform();
            EXPECT_near(p.length(), 1., 1e-10);
            p *= e.unitCircleTransform();
            EXPECT_near(e.pointAt(t), p, 1e-10);
        }
    }
}

TEST(EllipseTest, PointAt) {
    Ellipse a(Point(0,0), Point(10,20), 0);
    EXPECT_near(a.pointAt(0), Point(10,0), 1e-10);
    EXPECT_near(a.pointAt(M_PI/2), Point(0,20), 1e-10);
    EXPECT_near(a.pointAt(M_PI), Point(-10,0), 1e-10);
    EXPECT_near(a.pointAt(3*M_PI/2), Point(0,-20), 1e-10);

    Ellipse b(Point(0,0), Point(10,20), M_PI/2);
    EXPECT_near(b.pointAt(0), Point(0,10), 1e-10);
    EXPECT_near(b.pointAt(M_PI/2), Point(-20,0), 1e-10);
    EXPECT_near(b.pointAt(M_PI), Point(0,-10), 1e-10);
    EXPECT_near(b.pointAt(3*M_PI/2), Point(20,0), 1e-10);
}

TEST(EllipseTest, UnitTangentAt) {
    Ellipse a(Point(14,-7), Point(20,10), 0);
    Ellipse b(Point(-77,23), Point(40,10), Angle::from_degrees(45));

    EXPECT_near(a.unitTangentAt(0), Point(0,1), 1e-12);
    EXPECT_near(a.unitTangentAt(M_PI/2), Point(-1,0), 1e-12);
    EXPECT_near(a.unitTangentAt(M_PI), Point(0,-1), 1e-12);
    EXPECT_near(a.unitTangentAt(3*M_PI/2), Point(1,0), 1e-12);

    EXPECT_near(b.unitTangentAt(0), Point(-M_SQRT2/2, M_SQRT2/2), 1e-12);
    EXPECT_near(b.unitTangentAt(M_PI/2), Point(-M_SQRT2/2, -M_SQRT2/2), 1e-12);
    EXPECT_near(b.unitTangentAt(M_PI), Point(M_SQRT2/2, -M_SQRT2/2), 1e-12);
    EXPECT_near(b.unitTangentAt(3*M_PI/2), Point(M_SQRT2/2, M_SQRT2/2), 1e-12);
}

TEST(EllipseTest, Bounds)
{
    // Create example ellipses
    std::vector<Ellipse> es;
    es.emplace_back(Point(-15,25), Point(10,15), Angle::from_degrees(45));
    es.emplace_back(Point(-10,33), Point(40,20), M_PI);
    es.emplace_back(Point(10,-33), Point(40,20), Angle::from_degrees(111));
    es.emplace_back(Point(-10,-33), Point(50,10), Angle::from_degrees(222));

    // for reproducibility
    g_random_set_seed(1234);

    for (auto & e : es) {
        Rect r = e.boundsExact();
        Rect f = e.boundsFast();
        for (unsigned j = 0; j < 10000; ++j) {
            Coord t = g_random_double_range(-M_PI, M_PI);
            auto const p = e.pointAt(t);
            EXPECT_TRUE(r.contains(p));
            EXPECT_TRUE(f.contains(p));
        }
    }

    Ellipse e(Point(0,0), Point(10, 10), M_PI);
    Rect bounds = e.boundsExact();
    Rect coarse = e.boundsFast();
    EXPECT_EQ(bounds, Rect(Point(-10,-10), Point(10,10)));
    EXPECT_TRUE(bounds.contains(e.pointAt(0)));
    EXPECT_TRUE(bounds.contains(e.pointAt(M_PI/2)));
    EXPECT_TRUE(bounds.contains(e.pointAt(M_PI)));
    EXPECT_TRUE(bounds.contains(e.pointAt(3*M_PI/2)));
    EXPECT_TRUE(bounds.contains(e.pointAt(2*M_PI)));
    EXPECT_TRUE(coarse.contains(e.pointAt(0)));
    EXPECT_TRUE(coarse.contains(e.pointAt(M_PI/2)));
    EXPECT_TRUE(coarse.contains(e.pointAt(M_PI)));
    EXPECT_TRUE(coarse.contains(e.pointAt(3*M_PI/2)));
    EXPECT_TRUE(coarse.contains(e.pointAt(2*M_PI)));

    e = Ellipse(Point(0,0), Point(10, 10), M_PI/2);
    bounds = e.boundsExact();
    coarse = e.boundsFast();
    EXPECT_EQ(bounds, Rect(Point(-10,-10), Point(10,10)));
    EXPECT_TRUE(bounds.contains(e.pointAt(0)));
    EXPECT_TRUE(bounds.contains(e.pointAt(M_PI/2)));
    EXPECT_TRUE(bounds.contains(e.pointAt(M_PI)));
    EXPECT_TRUE(bounds.contains(e.pointAt(3*M_PI/2)));
    EXPECT_TRUE(bounds.contains(e.pointAt(2*M_PI)));
    EXPECT_TRUE(coarse.contains(e.pointAt(0)));
    EXPECT_TRUE(coarse.contains(e.pointAt(M_PI/2)));
    EXPECT_TRUE(coarse.contains(e.pointAt(M_PI)));
    EXPECT_TRUE(coarse.contains(e.pointAt(3*M_PI/2)));
    EXPECT_TRUE(coarse.contains(e.pointAt(2*M_PI)));
}